
Lab 6: Log probabilities and assignment 3
Data structures and Algorithms for CL III

Anna Dick, Lea Grüner

December 14, 2020

a2 reminders

I use Github productively, push after every step

I this also makes it easier to share the work with your partner
and we can help you better if you have questions related to
your code

I don’t forget to tag your final submission as final, a comment
is not a tag
git tag final
git push - -tags
(or on github ”tags”, create a new release)

Logarithm refresher

The logarithm is the exponent to which a base has to be raised to
produce x (inverse of exponentiation)

log10 1000 = 3
log2

1
2 = −1

loge 10 = 2.30258509299

Different mathematical properties like:
The logarithm of a product is the sum of the logarithms of the
factors (log xy = log x + log y)

Logarithm plots with common bases

Log scale and log probability

I The logarithmic scale makes it much easier to compare and
visualize values that cover a wide range like exponential
growth

I Log probability is not presented on a standard [0,1] interval
but on the logarithmic scale

I the logarithm is undefined for 0, so only non-zero probabilities

Why use log probabilities?

I Numerical stability is improved for very small numbers
(probabilities of unlikely words in large corpora)

I Faster runtime because addition is less expensive than
multiplication

I standard practice in NLP applications

Calculating log probabilities (in Python)

I Numpy has a natural log function np.log()

I Remember that there is no multiplication in log space:
Independent events are not multiplied but added

I use np.exp() to get the regular probability

if w is known
(1-a)*f(w)
return np.log(1 - a) + np.log(words_counts[word] / nwords)

if w is not known
a * product of all f(l) in w
logprob = 0
for l in word:

logprob += np.log(letter_counts[l] / nletters)
return np.log(self.a) + logprob

alternative: dealing with unknown letters (not required)
np.log(letter_counts.get(l, 1) /(nletters + len(letter_counts))

Assignment 3: Sorting

I implement insertion sort, quicksort and lexicographic sort

I compare runtimes using lists of random words

Quicksort with median-of-3 and cutoff

quicksort is based on a pivot element, all other values are
compared to the pivot
choosing a better pivot than some arbitrary element decreases
run-time
Median of three: Compare the values of three indices (first, last
and middle) and take the median value as pivot
In a sequence [5, 7, 3, 2, 6, 1, 4] the first value is 5, the middle is
2 and the last is 4 ->pick 4 as pivot
Cutoff: Once the portion you sort is smaller than a specified cutoff
length, sort it with insertion sort

Lexicographic Sorting

When sorting words, ordering is not as easy as for numbers
Lexicographic order: like in a lexicon, first letter has highest
priority, last letter the least
For a sequence [people, ball, tree] the order can be specified based
on the first letter [ball, people, tree]
But: For a sequence [baker, baking] the 4th letter is deciding, for a
sequence [tutorial, tutoring] the 7th letter is deciding
For a3, you should implement this letter by letter sort, such that
you end up with the word order as it would be in a lexicon (with
algorithms from class, not predefined functions/ libraries)

Links

Log rules: https://www.youtube.com/watch?v=o4GWKTr8SVQ&

ab_channel=studytimenz

Quicksort with hungarian folk dance:
https://www.youtube.com/watch?v=ywWBy6J5gz8&t=108s&

ab_channel=AlgoRythmics

https://www.youtube.com/watch?v=o4GWKTr8SVQ&ab_channel=studytimenz
https://www.youtube.com/watch?v=o4GWKTr8SVQ&ab_channel=studytimenz
https://www.youtube.com/watch?v=ywWBy6J5gz8&t=108s&ab_channel=AlgoRythmics
https://www.youtube.com/watch?v=ywWBy6J5gz8&t=108s&ab_channel=AlgoRythmics

