
Lab 2: Assignment 1 - Finding modes
Data structures and Algorithms for CL III

Anna Dick, Lea Grüner

November 16, 2020



What is a mode?

Mode: a peak in a sample
Element is a mode, if the element preceding and the following
element are smaller
if seq[i-1] < seq[i] and seq[i] > seq[i+1]

1st element: if the element is greater than the following
Last element: if the element is greater than the preceding



Modes

Unimodal:

Bimodal:



Modes in this assignment

Unimodal without repeating values:

Not allowed:



Examples

Mode of a sequence [1,3,5,7,6,4,2] :
Value 7 at index 3

Mode of a sequence [1,7,6,5,4,3,2] :
Value 7 at index 1

Mode of a sequence [1,2,3,4,5,6,7] :
Value 7 at index 6



Modes in a 2D matrix

An element in a 2D matrix is a mode, if the elements in the left and right
columns are smaller and the elements in the top and bottom rows are
smaller

Value 0.15730 at index [2][1] is mode

Value 0.14551 at index [2][0] is mode



Exercise 1.1

I Do a simple linear search over a sequence of unique items and
return the index of any mode

I Does not have to be the maximum in the whole sequence,
return the first index you find that fits the requirements of a
mode

I Think about special cases (empty list, one item, first or last
item is the mode,...)



Exercise 1.2

I Find the mode in a unimodal sequence using a more efficient
algorithm than linear search

I Review the slides about linear vs. binary search



Exercise 1.3

I Calculate the average running time of a given search function
over x random unimodal samples

I Recommended to use the libraries imported in the template

I Creating samples: uniform from numpy.random and norm
from scipy.stats, concatenate two sorted sequences, it’s just
important that there is one mode and the samples are random
each run

I Measuring the run time: use time.time() rather than timeit
because we want a different random sample for each run, only
start timing after the sample is created

I Test if your implementation of 1.2 runs faster than 1.1



Exercise 1.4

I Find a mode in a 2D matrix

I Best to use numpy arrays (np.array(input))

I Greedy hill climbing algorithm: take the available maximum
and check if all neighbours are lesser (no need to worry about
local or global maxima because distribution is assumed to be
unimodal)

I Test using multivariant normal from scipy.stats


