Lab 2: Assignment 1 - Finding modes
Data structures and Algorithms for CL IlI

Anna Dick, Lea Griiner

November 16, 2020

What is a mode?

Mode: a peak in a sample

Element is a mode, if the element preceding and the following
element are smaller

if seqli-1] < seqlil] and seq[i] > seqli+1]

1st element: if the element is greater than the following

Last element: if the element is greater than the preceding

Modes

Unimodal:

Bimodal:

Modes in this assignment

Unimodal without repeating values:

Not allowed:

Examples

Mode of a sequence [1,3,5,7,6,4,2] :
Value 7 at index 3

Mode of a sequence [1,7,6,5,4,3,2] :
Value 7 at index 1

Mode of a sequence [1,2,3,4,5,6,7] :
Value 7 at index 6

Modes in a 2D matrix

An element in a 2D matrix is a mode, if the elements in the left and right

columns are smaller and the elements in the top and bottom rows are
smaller

| |
0.00921 0.01661 0.01102 0.00269
0.04673 0.08427 0.05591 0.01364
0.08723 0.15730 0.10435 0.02547
0.05990 0.10802 0.07166 0.01749

0.01870 0.00743 0.00109 0.00006
0.08601 0.03419 0.00500 0.00027
0.14551 0.05784 0.00846 0.00045
0.09056 0.03600 0.00526 0.00028

Value 0.14551 at index [2][0] is mode

Exercise 1.1

» Do a simple linear search over a sequence of unique items and
return the index of any mode

» Does not have to be the maximum in the whole sequence,
return the first index you find that fits the requirements of a
mode

» Think about special cases (empty list, one item, first or last
item is the mode,...)

Exercise 1.2

» Find the mode in a unimodal sequence using a more efficient
algorithm than linear search

P> Review the slides about linear vs. binary search

Exercise 1.3

» Calculate the average running time of a given search function
over x random unimodal samples

» Recommended to use the libraries imported in the template
» Creating samples: uniform from numpy.random and norm
from scipy.stats, concatenate two sorted sequences, it's just

important that there is one mode and the samples are random
each run

» Measuring the run time: use time.time() rather than timeit
because we want a different random sample for each run, only
start timing after the sample is created

» Test if your implementation of 1.2 runs faster than 1.1

Exercise 1.4

v

Find a mode in a 2D matrix
Best to use numpy arrays (np.array(input))

Greedy hill climbing algorithm: take the available maximum
and check if all neighbours are lesser (no need to worry about
local or global maxima because distribution is assumed to be
unimodal)

Test using multivariant_normal from scipy.stats

