Data Structures and Algor nal Linguistics III (IGCL-RA-07)

> Cağrı Cöltekin ccoltekin@sfs.uni-tuebingen.de

Winter Semester 2020/21

Tries - or 'standard' tries

- · A trie is a tree representation of a set of strings
- Each node is associated with a character
- Tracing paths from root to the leaf nodes produce each strings

- Shared prefixes in a trie is represented in common branch None of the string can be a prefix of another

Trios

- To prevent that no string is a of another, a common trick is append a special end-of-string symbol
- Another approach is to mark the nodes that correspond to ends of

Properties of tries

- Internal nodes may have as many children as the number of symbols in the alphabet
- average degree of nodes also goes down as the depth increase (longer prefi are less likely) . The height of the trie is the length of the longest string
- · Number of leaves are equal to the number of strings
- . In the worst case, the number of nodes is the total length of all strings

Suffix tries or tree

- . Suffix tries (or suffix trees) are tries that include all suffixes of a string
- · Suffix tries allow fast retrieval of any substring: substring search on a suffix trie is linear
- · They are used extensively in information retrieval
- . They can also be adapted for wild card search and approximate approximate

Properties of suffix tries

- * Standard suffix tries use $O(\ensuremath{\pi^2})$ space, compression reduces space requirement to O(n)
- Space complexity can be reduced by keeping indexes to the string rather than the string itself in the (compressed) trie nodes
- Iterative insertion of suffixes result in a quadratic $(O(q\pi^2))$ construction time complexity
- . There are linear time algorithms for conting suffix tries
- Generalized suffix tries allow storing multiple strings (docu single suffix trie (each string gets a special end-of-string marker)

- * A trie (or prefix tree) is a tree-based data structure, particularly used for fast
 - pattern matching Common applications include - Information retrieval: indexing large collections of texts based on keyword
 - amormation recrisival: indexing large collections or sequences
 Storing lexicons and implementing 'autocomplete'
 As a replacement for hash tables
 - A type of tries, suffix trees, are particularly useful for solving a number of
 - questions about strings efficiently

Searching in tries

Start from the root, jump to n

- with current character • Fail:
- If there is no character to follow - Input ends in a non-leaf node
- . Accept if we are at a leaf node at the end of the input

Inserting, deleting and complexity

- . Search in a trie is clearly linear in the size of the string being searched
- There is a factor coming from the alphabet size q, but this can be reduced to $O(\log q)$ with binary search, or O(1) if a method allowing direct addressing is · Both in
- ertion and deletion starts with a lookup, and possibly inserts n nodes or deletes them
- * All operations are similarly O(n) (without the effect of the alphabet size)

Compressed tries

- . In typical use, tries are sparse, resulting long chains
- Tries can be compressed by replacing 'redundant' nodes with nodes labeled with substrings rath
- than characters Compressing tries saves space, at
- may also speed up some operations

Suffix tries

- . If the search ends in a leaf node, ti pattern is a suffix of the string . If there is a path from root
- following until the end of the string the pattern is in the string
- Suffix tries can also be cor like the regular tries

Summary

- Trior are useful transbased data etrastuma
- * Their applications include set or map imple
- * Reading suggestion: Goodrich, Tamassia, and Goldwasser (2013, chapter 13)
 - Regular languages and finite state :
 - Suggested reading: Jurafsky and Martin (2009, chapter 2)

Acknowledgments, credits, references			
Conderly, Michael T., Roberto Tamania, and Michael H. Gold Date Structure and Algorithms in Pigline, John Wiley & Louis, In STRIBLESS, Canade and James H. Martin (2009). Speech and Large Introduction to Martin (2009). Speech and Large Rengition. second column. Features Proteins (Englished Large Rengition. second column. Features Proteins Ed.).	wasser (2013). corporated. san: age Processing: An distics, and Speech 13-504196-3.		
C. Cilirlan, 188 / December of Edingers	Winter Security 200(21 A.I.)	C-Cillains, 58 / Decemby of Salangers	Neir Sessie 2007 A2
C. Cill-line, NB / University of Talkingen	Water Severaler 2001(21 A.3	C-Cillulan, 50 / Chrimmily of Stringer	Marke Seasoner 2020/20 A.4
C. Calledon, 188 / Deliveraby of Etilogram	Note Secrete 200(2) A3		