
Recap: basic data structures
Data Structures and Algorithms for Computational Linguistics III

ISCL-BA-07

Çağrı Çöltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2020/21

Introduction Abstract data types Algorithms

Overview

• Some basic data structures
– Arrays
– Lists
– Stacks
– Queues

• Revisiting searching a sequence

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 1 / 16

Introduction Abstract data types Algorithms

Abstract data types and data structures

• An abstract data type (ADT), or abstract data structure, is an object with
well-defined operations. For example a stack supports push() and pop()
operations

• An abstract data structure can be implemented using different data structures.
For example a stack can be implemented using a linked list, or an array

• Sometimes names, usage is confusingly similar

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 2 / 16

Introduction Abstract data types Algorithms

Arrays

• An array is simply a contiguous sequence of
objects with the same size

• Arrays are very close to how computers store
data in their memory

• Arrays can also be multi-dimensional. For
example, matrices can be represented with
2-dimensional arrays

• Arrays support fast access to their elements
through indexing

• On the downside, resizing and inserting values
in arbitrary locations are expensive

...
3
6
8
9
3
0
...

a[0]
a[1]

...

a = [3, 6, 8, 9, 3, 0]

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 3 / 16

Introduction Abstract data types Algorithms

Arrays
in Python

• No built-in array data
structure in Python

• Lists are indexable
• For proper/faster arrays,
use the numpy library

List indexing in Python

a = [3, 6, 8, 9, 3, 0]
a[0] # 3
a[-1] # 0
a[1:4] # [6, 8, 9]
a2d = [[3, 6, 8], [9, 3, 0]]
a2d[0,1] # 6

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 4 / 16

Introduction Abstract data types Algorithms

Lists
• Main operations for list ADT are

– append
– prepend
– head (and tail)

• Lists are typically implemented using linked lists (but array-based lists are
also common)

• Python lists are array-based

3 6 8 9 3 0head

3 6 8 9 3 0head

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 5 / 16

Introduction Abstract data types Algorithms

Stacks

• A stack is a last-in-first (LIFO) out data structure
• Two basic operations:

– push
– pop

• Stacks can be implemented using linked lists (or arrays)

0

push(3)

3
0

push(5)

5
3
0

pop()

3
0

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 6 / 16

Introduction Abstract data types Algorithms

Queues

• A queue is a first-in-first (FIFO) out data structure
• Two basic operations:

– enqueue
– dequeue

• Queues can be implemented using linked lists (or maybe arrays)

0

enqueue(3)

3
0

enqueue(5)

5
3
0

5
3

dequeue()

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 7 / 16

Introduction Abstract data types Algorithms

Other common ADT

• Strings are often implemented based on character arrays
• Maps or dictionaries are similar to arrays and lists, but allow indexing with
(almost) arbitrary data types

– Maps are generally implemented using hashing (later in this course)
• Sets implement the mathematical (finite) sets: a collection unique elements
without order

• Trees are used in many algorithms we discuss later (we will revisit trees as
data structures)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 8 / 16

Introduction Abstract data types Algorithms

Studying algorithms

• In this course we will study a series of important algorithms, including
– Sorting
– Pattern matching
– Graph traversal

• For any algorithm we design/use, there are a number of desirable properties
Correctness an algorithm should do what it is supposed to do
Robustness an algorithms should (correctly) handle all possible inputs it may receive
Efficiency an algorithm should be light on resource usage
Simplicity an algorithm should be as simple as possible

– …
• We will briefly touch upon a few of these issues with a simple case study

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 9 / 16

Introduction Abstract data types Algorithms

A simple problem: searching a sequence for a value

1 def linear_search(seq, val):
2 answer = None
3 for i in range(len(seq)):
4 if seq[i] == val:
5 answer = i
6 return answer

Is this a good algorithm? Can we improve it?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 10 / 16

Introduction Abstract data types Algorithms

Linear search: take 2

1 def linear_search(seq, val):
2 for i in range(len(seq)):
3 if seq[i] == val:
4 return i
5 return None

Can we do even better?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 11 / 16



Introduction Abstract data types Algorithms

Linear search: take 3

1 def linear_search(seq, val):
2 n = len(seq) - 1
3 last = seq[n]
4 seq[n] = val
5 i = 0
6 while seq[i] != val:
7 i += 1
8 seq[n] = last
9 if i < n or seq[n] == val:

10 return i
11 else:
12 return None

• Is this better?
• Any disadvantages?
• Can we do even better?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 12 / 16

Introduction Abstract data types Algorithms

Binary search

1 def binary_search(seq, val):
2 left, right = 0, len(seq)
3 while left <= right:
4 mid = (left + right) // 2
5 if seq[mid] == val:
6 return mid
7 if seq[mid] > val:
8 right = mid - 1
9 else:

10 left = mid + 1
11 return None

• We can do (much) better if
the sequence is sorted.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 13 / 16

Introduction Abstract data types Algorithms

Binary search
recursive version

1 def binary_search_recursive(seq, val, left=None, right=None):
2 if left is None:
3 left = 0
4 if right is None:
5 right = len(seq)
6 if left > right:
7 return None
8 mid = (left + right) // 2
9 if seq[mid] == val:

10 return mid
11 if seq[mid] > val:
12 return binary_search_recursive(seq, val, left, mid - 1)
13 else:
14 return binary_search_recursive(seq, val, mid + 1, right)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 14 / 16

Introduction Abstract data types Algorithms

A note on recursion

• Some problems are much easier to solve recursively.
• Recursion is also a mathematical concept, properties of recursive algorithms
are often easier to prove

• Reminder:
– You have to define one or more base cases (e.g., if left > right for binary
search)

– Each recursive step should approach the base case (e.g., should run on a
smaller portion of the data)

• We will see quite a few recursive algorithms, it is time for getting used to if
you are not

Exercise: write a recursive function for linear search.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 15 / 16

Introduction Abstract data types Algorithms

Summary

• This lecture was a slow review of some basic data structure and algorithms.
• We will assume you know these concept, revise your earlier knowledge if
needed

Next:
• A few common patterns of algorithms
• Analysis of algorithms

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 16 / 16

Introduction Abstract data types Algorithms

An interesting, but not-so-relevant anecdote

How hard can binary search could be?
• It was first suggested in lecture in 1946 (by John Mauchly)
• First fix to this version was suggested in 1960 (by Derrick Henry Lehmer)
• Another, fix/improvement over this was published on 1962 (by Hermann
Bottenbruch)

• In 2006, a bug in Java’s binary search implementation was discovered

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.1

Introduction Abstract data types Algorithms

Acknowledgments, credits, references

• Some of the slides are based on the previous year’s course by Corina Dima.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.2


	Recap: basic data structures
	Introduction
	Overview
	Abstract data types and data structures

	Abstract data types
	Arrays
	Arrays
	Lists
	Stacks
	Queues
	Other common ADT

	Algorithms
	Studying algorithms
	A simple problem: searching a sequence for a value
	Linear search: take 2
	Linear search: take 3
	Binary search
	Binary search
	A note on recursion

	
	Summary
	An interesting, but not-so-relevant anecdote
	Acknowledgments, credits, references



