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Algorithmic patterns
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+ Some common approaches to algorithm design
Gagn Caltekin - Revisiting recursion
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Recursion - again How does this recursion work

last lecture: writing a

the complete code

Ehiuen £1_sasrenoeli), v, 120)

+ And we need a base case:

1 search((2],2,8)

Recursion: practical issues

Another recursive example
securson depthand il ecursion an algoim course s equired o troduce Fibonace mbers
Fibonaccl numbers are defined as:
+ Each function call equires some bookkeeping
Fozo dot £ib()
oG astack cach P
function call =1 Teturn n
+ Most environments limit the number of recursive calls: long chains of Fa=Fa1+Fnz for n>1 return fib(a-2) + £ib(a-1)
recursion i lkely to be errors

« Tail ecursion (e.g;, our recursive search example) is easy to convert to

iteration + Recursion is common in math, and + Note that we now have binary
‘maps well to the recursive. recursion, each function call creates
+ Ttis also easy to optimize, and optimized by many compilers (not by the gorithans e
Python interpreter)

+ We follow the math exactly, but is
this code efficient?

Visualizing binary recursion Brute force

« I some cases, we may need to enumerate all possible cases (e, to find the
best solution)

+ Common in combinatorial problems.
+ Often intractable, practical only for small input sizes

o1

3

Brute force

example: finding ll possible ways to segment a string

Segmentation

+ Segmentation is prevalentin CL.

dot soguont_r(seq)
if lenGe) == 1
yiold lseq)

that do not use white space)
- H units h i
compound splitting)

for seg in segment_r(seq(1:]):
yiold [seq(o]] + ses

e
. yiold [seqlo] + seg[o]] + segl1:]

+ We consider the following problem:

~ Given a metric o score to determine the “best” segmentation

« How can we enumerate all possible segmentations of a string?

+ Can you think of a non-recursive solution?

Enumerating segmentations

sketehof a non-recursive solution

Divide and conquer

+ The general idea is dividing the problem into smaller parts until it becomes
trivial o solve.

+ Once small parts are solved, the results are combined
+ Goes very well with recursion
+ We have already seen a particular flavor: binary search

+ 1" means there is a boundary at this position
« Problem is now enumerating all possible binary strings of length n — 1
(this s binary counting)




Divide and conquer

Generalides

divide

Subproblem N

conquer

combine

Divide and conquer

am example: nesrest nighbors (only  sketch)
« Task: find the closest two points. =
+ Direct solution: Lo
20 20 = 400 comparisons' o
« Divide . o .
+ Solve separately (conquer): - .
0% 10+ 10 10 = 200 comparisons . N
Combine: pick the minimum of the ° . o
individual solutions

« Gain is higher when n is larger, and we divide further

Divide and conquer Divide and conquer
+ Task find the closes wo points e e
+ Direc slution op % J|'a + s prbably the ot common cxale
20 x 20 = 400 comparisons’ o good results, the o
+ Divide ° o . " hould beles han the gain rom division
+ Solve separately (conquer) o . + Many ofthe important algorithms fall into this category:
200 comparisons e = merge sortand quick srt (coming soon)
+ Combine: pick the minimum of the .

~ fast Furrier transform (FFT)

Greedy algorithms

+ An algorithm is greedy if it optimizes a local constraint
d

« In others they may result in ‘good enough solutions
+ Ifthey work, they are efficient

« An linto this y (eg, finding
shortest paths, scheduling)

Greedy algorithms

3 simple xample: change making’

+ We wantto
1. Pick the largest coin ¢ <=5

of coins for a ps s

2 sets=
5. repeat 1 &2 untils —0
« I this algorithm correct?

« Think about coins of 10, 30, 40 and apply the algorithm for the sum value of
0

« I it correct if the coin values were limited Euro coins?

Dynamic programming

+ Dynamic programming is a method to save earler results to reduce
computation

 Itis sometimes called memoization (it not  typo)

+ Again, a large number of algorithms we use fal nto this category, including
common parsing algorithms

Dynamic programming
example Fibonacc

1 det memotivGa, memo = {0 0, 1:1))
ifn

s o) meotib(a-t) + memetib(a-2)
L roturn moom)

« Wesave the results calculated in a dictionary,
« ifthe resultis already in t

« Otherwise we calculate recursively as before

150 a ‘neater’

memoization
Summary Linear search
alitle bitof optimisaton
« We saw a few general approaches to (efficient) algorithm design
+ There are other common patterns, including ) ; P —
~ Backiracking, Branch-and-bound 1t it . 40
- Kandomiaed slorihms } : -
~ Tarsformatien H H o
« D difficult b ; 2w, : o 1 soraaten, . 1
(next topic)
Next:

+ Analysis of algorithms
+ Reading: textbook (Goodrich, Tamassia, and Goldwasser 2013) chapter 3

Which one is faster, and why?

Better solutions for Fibonacci numbers Segmentation
without iand
mw 1 def segnent _r(seq):
ot 1102 2 ses - 0
L s Af lenGseq) - 1:
ey . return (e
e (a5 R e e
. Segs.appond(Tseqlol] +
et appenaoenl() < sogf) < soglis)
Which one i faster/better?  revurs segs
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