Overview
Algorithmic patterns
Data Structures and Algorithms for Computational Linguistics III
(ISCL-BA-07)
+ Some common approaches to algorithm design
Gagn Caltekin - Revisiting recursion
ceoltekindats. uni-tuebingen. de - Brute force

- Divide and conquer
~ Greedy algorithms

S <Gyt

S e Sprachwisnmachtt

Winter Semester 2020/21

Recursion - again How does this recursion work

last lecture: writing a

the complete code

Ehiuen £1_sasrenoeli), v, 120)

+ And we need a base case:

1 search((2],2,8)

Recursion: practical issues

Another recursive example
securson depthand il ecursion an algoim course s equired o troduce Fibonace mbers
Fibonaccl numbers are defined as:
+ Each function call equires some bookkeeping
Fozo dot £ib()
oG astack cach P
function call =1 Teturn n
+ Most environments limit the number of recursive calls: long chains of Fa=Fa1+Fnz for n>1 return fib(a-2) + £ib(a-1)
recursion i lkely to be errors

« Tail ecursion (e.g;, our recursive search example) is easy to convert to

iteration + Recursion is common in math, and + Note that we now have binary
‘maps well to the recursive. recursion, each function call creates
+ Ttis also easy to optimize, and optimized by many compilers (not by the gorithans e
Python interpreter)

+ We follow the math exactly, but is
this code efficient?

Visualizing binary recursion Brute force

« I some cases, we may need to enumerate all possible cases (e, to find the
best solution)

+ Common in combinatorial problems.
+ Often intractable, practical only for small input sizes

o1

3

Brute force

example: finding ll possible ways to segment a string

Segmentation

+ Segmentation is prevalentin CL.

dot soguont_r(seq)
if lenGe) == 1
yiold lseq)

that do not use white space)
- H units h i
compound splitting)

for seg in segment_r(seq(1:]):
yiold [seq(o]] + ses

e
. yiold [seqlo] + seg[o]] + segl1:]

+ We consider the following problem:

~ Given a metric o score to determine the “best” segmentation

« How can we enumerate all possible segmentations of a string?

+ Can you think of a non-recursive solution?

Enumerating segmentations

sketehof a non-recursive solution

Divide and conquer

+ The general idea is dividing the problem into smaller parts until it becomes
trivial o solve.

+ Once small parts are solved, the results are combined
+ Goes very well with recursion
+ We have already seen a particular flavor: binary search

+ 1" means there is a boundary at this position
« Problem is now enumerating all possible binary strings of length n — 1
(this s binary counting)

Divide and conquer

Generalides

divide

Subproblem N

conquer

combine

Divide and conquer

am example: nesrest nighbors (only sketch)
« Task: find the closest two points. =
+ Direct solution: Lo
20 20 = 400 comparisons' o
« Divide . o .
+ Solve separately (conquer): - .
0% 10+ 10 10 = 200 comparisons . N
Combine: pick the minimum of the ° . o
individual solutions

« Gain is higher when n is larger, and we divide further

Divide and conquer Divide and conquer
+ Task find the closes wo points e e
+ Direc slution op % J|'a + s prbably the ot common cxale
20 x 20 = 400 comparisons’ o good results, the o
+ Divide ° o . " hould beles han the gain rom division
+ Solve separately (conquer) o . + Many ofthe important algorithms fall into this category:
200 comparisons e = merge sortand quick srt (coming soon)
+ Combine: pick the minimum of the .

~ fast Furrier transform (FFT)

Greedy algorithms

+ An algorithm is greedy if it optimizes a local constraint
d

« In others they may result in ‘good enough solutions
+ Ifthey work, they are efficient

« An linto this y (eg, finding
shortest paths, scheduling)

Greedy algorithms

3 simple xample: change making’

+ We wantto
1. Pick the largest coin ¢ <=5

of coins for a ps s

2 sets=
5. repeat 1 &2 untils —0
« I this algorithm correct?

« Think about coins of 10, 30, 40 and apply the algorithm for the sum value of
0

« I it correct if the coin values were limited Euro coins?

Dynamic programming

+ Dynamic programming is a method to save earler results to reduce
computation

 Itis sometimes called memoization (it not typo)

+ Again, a large number of algorithms we use fal nto this category, including
common parsing algorithms

Dynamic programming
example Fibonacc

1 det memotivGa, memo = {0 0, 1:1))
ifn

s o) meotib(a-t) + memetib(a-2)
L roturn moom)

« Wesave the results calculated in a dictionary,
« ifthe resultis already in t

« Otherwise we calculate recursively as before

150 a ‘neater’

memoization
Summary Linear search
alitle bitof optimisaton
« We saw a few general approaches to (efficient) algorithm design
+ There are other common patterns, including) ; P —
~ Backiracking, Branch-and-bound 1t it . 40
- Kandomiaed slorihms } : -
~ Tarsformatien H H o
« D difficult b ; 2w, : o 1 soraaten, . 1
(next topic)
Next:

+ Analysis of algorithms
+ Reading: textbook (Goodrich, Tamassia, and Goldwasser 2013) chapter 3

Which one is faster, and why?

Better solutions for Fibonacci numbers Segmentation
without iand
mw 1 def segnent _r(seq):
ot 1102 2 ses - 0
L s Af lenGseq) - 1:
ey . return (e
e (a5 R e e
. Segs.appond(Tseqlol] +
et appenaoenl() < sogf) < soglis)
Which one i faster/better? revurs segs

Acknowledgments, credits, references

+ Some of the slides are based on the previous year's course by Corina Dima.

B Goodrich, Michael T, Roberto Tamassia, and Michael H. Gold
‘Data Structures and Algorithms in Python. |
it

	Algorithmic patterns
	Introduction
	Overview

	More on recursion
	Recursion - again
	How does this recursion work
	Recursion: practical issues
	Another recursive example
	Visualizing binary recursion

	Some common algorithm patterns
	Brute force
	Brute force
	Segmentation
	Enumerating segmentations
	Divide and conquer
	Divide and conquer
	Divide and conquer
	Divide and conquer
	Divide and conquer
	Greedy algorithms
	Greedy algorithms
	Dynamic programming
	Dynamic programming

	
	Summary
	Linear search
	Better solutions for Fibonacci numbers
	Segmentation
	Acknowledgments, credits, references

