Graphs

Data Structures and Algorithms for Computational Linguistics III (ISCL-BA-07)

Çağn Çoltekin
ccoltekinasfa.uni-tuebingen.de
Univeraity of Tubingos
Seminar fur Sprachwiksenschaft
Winter Semester 2020/21

Introduction

- A graph is collection of vertices (nodes) connected pairwise by edges (arcs).
- A graph is a useful abstraction with
many applications
- Most problems on graphs are
challenging

Example applications
City map.

- City maps
- Chemical formulas
- Neural networks
- Artificial neural networks
- Electronic circuits
- Computer networks
- Infectious diseases
- Probability distributions
- Word semantics

Example applications

City map

- City maps
- Chemical formulas
- Neural networks
- Artificial neural networks
- Electronic circuits
- Computer networks
- Infectious diseases
- Probability distributions

- Word semantics

Example applications Cliy map

- City maps
- Chemical formulas
- Neural networks
- Artificial neural networks
- Electronic circuits
- Computer networks
- Infectious diseases
- Probability distributions
- Word semantics

Example applications City map

- City maps
- Chemical formulas
- Neural networks
- Artificial neural networks
- Electronic circuits
- Computer networks
- Infectious diseases
- Probability distributions
- Word semantics

- Probability distribution
- Word semantics

Example applications
City map

- City maps
- Chemical formulas
- Neural networks
- Artificial neural networks
- Electronic circuits
- Computer networks
- Infectious diseases
- Probability distributions
- Word semantics

Example applications
City map

- City maps
- Chemical formulas
- Neural networks
- Artificial neural networks
- Electronic circuits
- Computer networks
- Infectious diseases
- Probability distributions
- Word semantics

Example applications
City map

- City maps
- Chemical formulas
- Neural networks
- Artificial neural networks
- Electronic circuits
- Computer networks
- Infectious diseases
- Probability distributions
- Word semantics

Example applications
many more..

- Food web
- Course dependencies
- Social media
- Scheduling
- Infectious diseases
- Games
- Academic citations
- Inheritance relations in object-oriented programming
- Flow charts
- Financial transactions
- Neural networks

Worlds languages
PageRank algorithm

Definition

- A gnaph G is a pair (V, E) where
- V is a set of nodes (or vertices),

E $\subseteq(\langle x, y\rangle \mid x, y \in V$ and $x \neq y)$ is a set of ordered or unordered pairs

- Graph represent a set of objects (nodes) and the relationships between the objects (edges)
- Edges in a graph can be either directed, or undirected
- directed edges are 2 -tuples, or ordered pairs
(order is important)
(order is important)
undiected edges are unordered pairs, or
pair sets (order is not important)
pair sets (order is not important)

Types of graphs

- An undirected gruph is a graph with only undirected edges - social relations
- A directed graph (digraph) is a graph with only directed edges
- course dependencies
- A mixed graph contains both directed and undirected edges
- a city map

Types of graphs

- An undirected graph is a graph with only undirected edges
- social relations
- A directed graph (digraph) is a graph with only directed edges
- course dependencies
- A mixed graph contains both directed and undirected edges

- a city map

More graphs types

A graph is simple if there is only a single edge between two (our earlier definition)
A graph is called a multi-gnoph if there are multiple edges (with the same direction) between the same two nodes

- A graph is called a hyper-gnaph if there a single edge can link more than two nodes
- If the edges of a graph has associated weights, it is called a wrighted groph
- A complete gnaph contains edges from each node to every other node

A bipartite gnaph has two disjoint sets of nodes, where edges are always across the sets

Types of graphs

- An undirected graph is a graph with only undirected edges
- social relations
- A directed graphl (digraph) is a graph with only directed edges
- course dependencies
- A mixed graph contains both directed and undirected edges

- a city map.

\qquad

More definitions

- Two nodes joined by an edge are called the endpoints of the edge
- An edge is called incident to a node if the node is one of its endpoints. Two nodes are adjacent (or they are neighbors) if they are incident to the same adge
- The degrer (or valency) of a node is the number of its incident edges
- In a digraph indegree of a node is the number of incoming edges, and outdegree of a node is the number of outgoing edges

edge 1 is incident to A and B

More definitions

- Two nodes joined by an edge are called the endpoints of the edge
- An edge is called incident to a node if the node is one of its endpoints. Two nodes are adjacent (or they are neighbors) if they are incident to the same adge
- The degree (or valency) of a node is the number of its incident edges
- In a digraph indegree of a node is the number of incoming edges, and outdegree of a node is the number of outgoing edges

A and B are endpoints of edge 1

More definitions

- Two nodes joined by an edge are called the endpoints of the edge
- An edge is called incident to a node if the node is one of its endpoints. Two nodes are adjacent (or they are neighbors) if they are incident to the same adge
- The degree (or valency) of a node is the
number of its incident edges
- In a digraph indegree of a node is the number of incoming edges, and outdegree of

$\operatorname{deg}(\mathrm{A})=4$
a node is the number of outgoing edges

More definitions

- Two nodes joined by an edge are called the endpoints of the edge
- An edge is called incident to a node if the node is one of its endpoints. Two nodes are adjacent (or they are neighbors) if they are incident to the same adge
- The degrec (or valency) of a node is the number of its incident edges
- In a digraph indegree of a node is the number of incoming edges, and outdegree of a node is the number of outgoing edges

indeg $(A)=1$, outdeg $(A)=3$

More definitions

- Two edges are parallel if their endpoints are the same
- For a directed graph parallel edges are ones with the same direction
- A self-loop is an edge from a node to itself
- A path is an sequence of alternating edges and nodes
- A cycle is a path that starts and ends at the
 same node
- A path or a cycle is a simple if every node on the path is visited only once

More definitions

- Two edges are parallel if their endpoints are the same
- For a directed graph parallel edges are ones with the same direction
- A self-loop is an edge from a node to itself
- A path is an sequence of alternating edges and nodes
- A cycle is a path that starts and ends at the

same node
- A path or a cycle is a simple if every node on the path is visited only once

More definitions

- Two edges are parallel if their endpoints are the same
- For a directed graph parallel edges are ones with the same direction
- A self-loop is an edge from a node to itself
- A path is an sequence of alternating edges
and nodes
- A cycle is a path that starts and ends at the

A path or a cycle is a simple if every node on the path is visited only once

More definitions

- Two edges are parallel if their endpoints are the same
- For a directed graph parallel edges are ones with the same direction
- A self-loop is an edge from a node to itself
- A path is an sequence of alternating edges and nodes
- A cycle is a path that starts and ends at the
 same node
- A path or a cycle is a simple if every node on the path is visited only once

More definitions

- Two edges are parallel if their endpoints are the same
- For a directed graph parallel edges are ones with the same direction
- A self-loop is an edge from a node to itself
- A path is an sequence of alternating edges and nodes
- A cycle is a path that starts and ends at the

- A cycle is a path that starts and ends at the
same node
- A path or a cycle is a simple if every node on
the path is visited only once
- A path or a cycle is a simple if every node on
the path is visited only once
\qquad

More definitions

- Two edges are parallel if their endpoints are the same
- For a directed graph parallel edges are ones with the same direction
- A self-loop is an edge from a node to itself
- A path is an sequence of alternating edges and nodes
- A cycle is a path that starts and ends at the same node
- A path or a cycle is a simple if every node on
the path is visited only once

More defintions

- A node A is readuable from another (B) if there is a (directed) path from A to B
- A graph is connected if all nodes are
reachable from each other
- A directed graph is strongly connected if all nodes are reachable from each other
- A subgraph a graph formed by a subset of nodes and edges of a graph
- If a graph is not connected, the maximally
connected subgraphs are called the

connected components

More defintions

- A node A is reacluable from another (B) if there is a (directed) path from A to B
- A graph is connected if all nodes are reachable from each other
- A directed graph is strongly connected if all nodes are reachable from each other
- A subgraph a graph formed by a subset of nodes and edges of a graph
- If a graph is not connected, the maximally connected subgraphs are called the connected components

More defintions

- A node A is reachable from another (B) if there is a (directed) path from A to B
- A graph is connected if all nodes are
reachable from each other
- A directed graph is strongly comnected if all nodes are reachable from each other
- A subgraph a graph formed by a subset of nodes and edges of a graph
- If a graph is not connected, the maximally connected subgraphs are called the connected components

More defintions

- A node A is reachable from another (B) if there is a (directed) path from A to B
- A graph is connected if all nodes are reachable from each other
- A directed graph is strongly connected if all nodes are reachable from each other
- A subgraph a graph formed by a subset of
nodes and edges of a graph
- If a graph is not connected, the maximally connected subgraphs are called the connected components

More defintions

- A node A is reachable from another (B) if there is a (directed) path from A to B
- A graph is connected if all nodes are
reachable from each other
- A directed graph is strongly connected if all nodes are reachable from each other
- A subgraph a graph formed by a subset of nodes and edges of a graph
- If a graph is not connected, the maximally connected subgraphs are called the connected components

\qquad

More defintiions

A spanning subgraph of a graph is a subgraph that includes all nodes of the graph

- A tree is a connected graph without cycles
- A spanning tree is a spanning subgraph which is a tree
- A forest is a disconnected acyclich graph

More defintions

A spanning subgnaph of a graph is a subgraph that includes all nodes of the graph

- A tree is a connected graph without cycles
- A spanning tree is a spanning subgraph which is a tree
- A forest is a disconnected acyclich graph

Some properties

sum of degrees

- For an undirected graph with m edges and set of nodes V

$$
\sum_{v \in V} \operatorname{deg}(v)=2 m
$$

- All edges are counted twice for each node they are incident to
- The total contribution of each node is twice its degree
- For a directed graph with m edges and set of nodes V

$$
\sum_{v \in V} \text { indeg }(v)=\sum_{v \in V} \text { outdeg }(v)=m
$$

Some properties

relation between the number of edges and nodes

- For a simple undirected graph with n nodes and m edges

$$
\mathrm{m} \leqslant \frac{\mathrm{n}(\mathrm{n}-1)}{2}
$$

- If the graph is simple
- there are no parallel edges
- there are no paralle ed
- the maximum degree

$$
2 m \leqslant n(n-1) \Rightarrow m \leqslant \frac{n(n-1)}{2}
$$

- For a directed graph with n nodes and m edges

The graph ADT

- A graph is a collection of nodes and edges

- Basic operations include
add_node (v) add a new node
remove_node (v) remove an existing node
adjacent (u, v) return the if the nodes are ajacent (for a digraph true only if here is a directed link from u to v)
naighbors (v) enumerate the neighbors of the node (for a digraph we list the nodes reachable through outgoing edges by default)
remove edge (u, v) remove an existing edge
add_edge (u, v) add a new edge
nodas() enumerate the nodes in the graph
odges() enumerate the edges in the graph

Edge list

- We keep simple lists for nodes and edges
Very simple structure, but not very efficient:
add_node (v) $O(1)$
famove_node(v) $\quad \mathrm{O}$ (m]
$\begin{array}{lll}\text { adjacent (u,v) } & \mathrm{O}(\mathrm{m}) \\ \text { noighbors(} & \mathrm{v}) & \mathrm{O}(\mathrm{m})\end{array}$
neighbors (v) $\mathrm{O}(\mathrm{m}$

Interesting problems on graphs

- Is there a (directed) path between two nodes?

What is the shortest path between two nodes?

- Is there a cycle in the graph?
- Is there a cycle that uses each edge exactly once? (Eulerian path)
- Is there a cycle that uses each node exactly once? (Hamiltonian path)

Are all nodes of the graph connected?
Is there a node that breaks connectivity if removed?
Is the graph planar. can it be drawn without crossing edges?

- Are two representations the representations of the same graph (isomorphic)?
- What is the importance of a web page, based on the links pointing to it?

Acknowledgments, credits, references

图 Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013) Data Structures and Algorithms in Python. John Willey \& Sons, Incorporated. Isax 9781118476734.

We keep simple lists for nodes and edges

edges
Very simple structure, but not very efficient:
add_node (v) $\mathrm{O}(\mathrm{n}$
Famove_node(v) O (n
naighbors (v) $O(n)$

Adjacency matrix

$$
\longrightarrow
$$

Adjacency list

ery simple structure, but not very efficient: add_node(v) $\mathrm{O}(1$
adjacent (u,v) O (minin(deg(u), deg(v))) neigbbors(v) O(deg(v))
\qquad

Summary

- Graphs are data structures with many applications
- Reading on graphs: Goodrich, Tamassia, and Goldwasser (2013, chapter 14), Next:
- Graph traversals
- Reading: Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 14)

\qquad Cclatan ss/bramivertien
echen

