Finite state automata

Data Structures and Algorithms for Computational Linguistics III (ISCL-BA-07)

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

University of Tübingen Seminar für Sprachwissenschaft

Winter Semester 2020/21

Why study finite-state automata?

- Unlike some of the abstract machines we discussed, finite-state automata are efficient models of computation
- There are many applications
 - Electronic circuit design
 - Workflow management
 - Games
 - Pattern matching

But more importantly ;-)

- Tokenization, stemming
- Morphological analysis
- Spell checking
- Shallow parsing/chunking

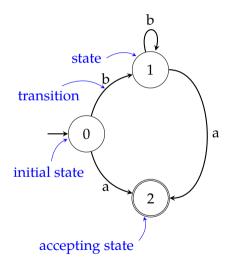
Finite-state automata (FSA)

- A finite-state machine is in one of a finite-number of states in a given time
- The machine changes its state based on its input
- Every regular language is generated/recognized by an FSA
- Every FSA generates/recognizes a regular language
- Two flavors:
 - Deterministic finite automata (DFA)
 - Non-deterministic finite automata (NFA)

Note: the NFA is a superset of DFA.

FSA as a graph

- An FSA is a directed graph
- States are represented as nodes
- Transitions are labeled edges
- One of the states is the *initial state*
- Some states are accepting states



DFA: formal definition

Formally, a finite state automaton, M, is a tuple $(\Sigma, Q, q_0, F, \Delta)$ with

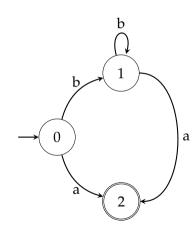
- Σ is the alphabet, a finite set of symbols
- Q a finite set of states
- q_0 is the start state, $q_0 \in Q$
 - F is the set of final states, $F \subseteq Q$
- Δ is a function that takes a state and a symbol in the alphabet, and returns another state $(\Delta: Q \times \Sigma \to Q)$

At any state and for any input, a DFA has a single well-defined action to take.

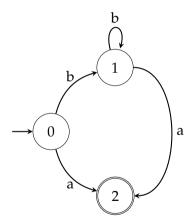
DFA: formal definition

an example

$$\begin{split} \Sigma &= \{a,b\} \\ Q &= \{q_0,q_1,q_2\} \\ q_0 &= q_0 \\ F &= \{q_2\} \\ \Delta &= \{(q_0,a) \rightarrow q_2, \quad (q_0,b) \rightarrow q_1, \\ & (q_1,a) \rightarrow q_2, \quad (q_1,b) \rightarrow q_1\} \end{split}$$

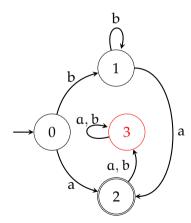


• Is this FSA deterministic?



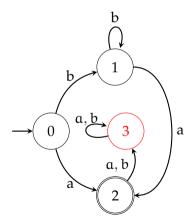
error or sink state

- Is this FSA deterministic?
- To make all transitions well-defined, we can add a sink (or error) state



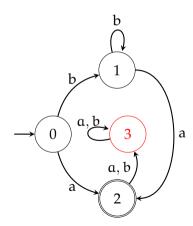
error or sink state

- Is this FSA deterministic?
- To make all transitions well-defined, we can add a sink (or error) state
- For brevity, we skip the explicit error state



error or sink state

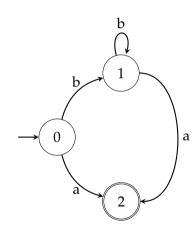
- Is this FSA deterministic?
- To make all transitions well-defined, we can add a sink (or error) state
- For brevity, we skip the explicit error state
 - In that case, when we reach a dead end, recognition fails



DFA: the transition table

transition to	able			
		symbol a b		-
		a	b	
	\rightarrow 0	2	1	
state	1 *2	2	1	
18	*2	Ø	Ø	
				-

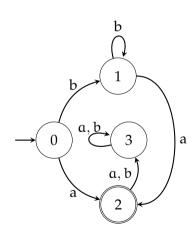
- \rightarrow marks the start state
 - * marks the accepting state(s)



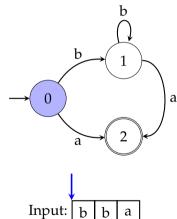
DFA: the transition table

transition t	able			
		S1/:	mhol	
		\mathbf{a}	mbol b	
	\rightarrow 0	2	1	-
state	1	2	1	
18	*2	3	3	
	3	3	3	
				•

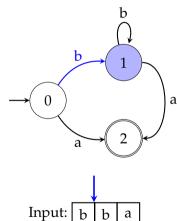
- \rightarrow marks the start state
 - * marks the accepting state(s)



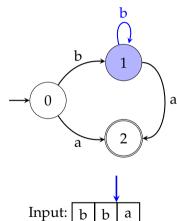
- 1. Start at q₀
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input



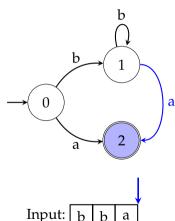
- 1. Start at q₀
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input

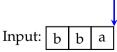


- 1. Start at q₀
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input

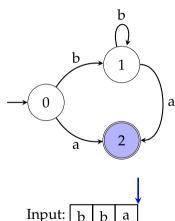


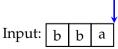
- 1. Start at q₀
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input





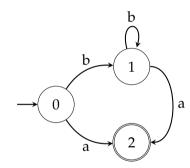
- 1. Start at q₀
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input





- 1. Start at q₀
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input

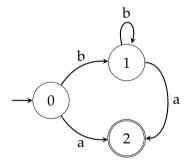
- What is the complexity of the algorithm?
- How about inputs:
 - bbbb
 - aa



Input: b b a

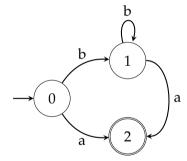
A few questions

• What is the language recognized by this FSA?



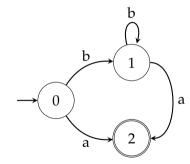
A few questions

- What is the language recognized by this FSA?
- Can you draw a simpler DFA for the same language?



A few questions

- What is the language recognized by this FSA?
- Can you draw a simpler DFA for the same language?
- Draw a DFA recognizing strings with even number of 'a's over Σ = {a, b}



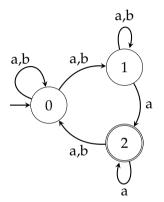
Non-deterministic finite automata

Formal definition

A non-deterministic finite state automaton, M, is a tuple $(\Sigma, Q, q_0, F, \Delta)$ with

- Σ is the alphabet, a finite set of symbols
- Q a finite set of states
- q_0 is the start state, $q_0 \in Q$
 - F is the set of final states, $F \subseteq Q$
- Δ is a function from (Q, Σ) to P(Q), power set of Q $(\Delta : Q \times \Sigma \to P(Q))$

An example NFA



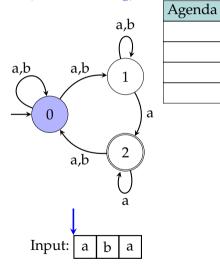
transition	table	!		
_		sy	-	
		a	mbol b	
	\rightarrow 0		0,1	_
state	1	1,2	1	
15	*2	0,2	0	
				-

- We have nondeterminism, e.g., if the first input is a, we need to choose between states 0 or 1
- Transition table cells have sets of states

Dealing with non-determinism

- Follow one of the links, store alternatives, and backtrack on failure
- Follow all options in parallel

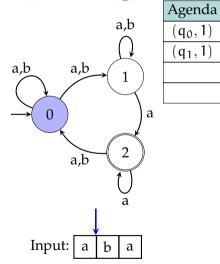
as search (with backtracking)



- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

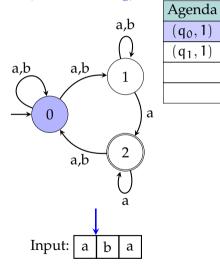
as search (with backtracking)



- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

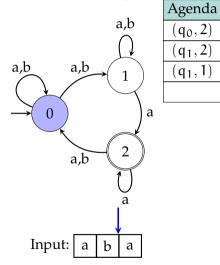
as search (with backtracking)



- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

as search (with backtracking)

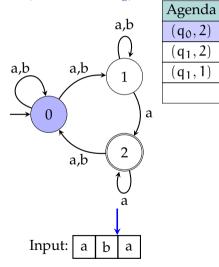


- 1. Start at qo
- 2. Take the next input, place all possible actions to an agenda
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise

Ç. Çöltekin, SfS / University of Tübingen

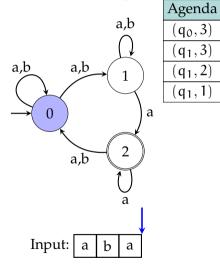
as search (with backtracking)



- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

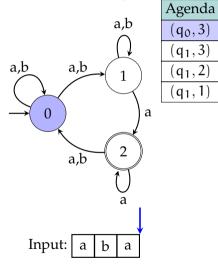
as search (with backtracking)



- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

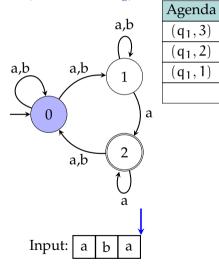
as search (with backtracking)



- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

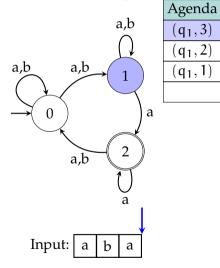
as search (with backtracking)



- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

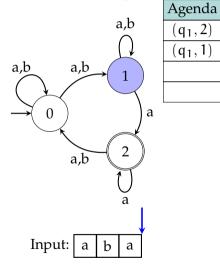
as search (with backtracking)



- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

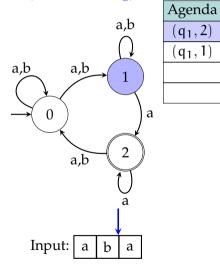
as search (with backtracking)



- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

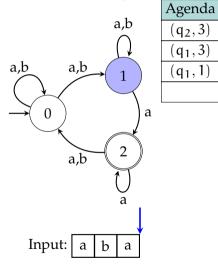
as search (with backtracking)



- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

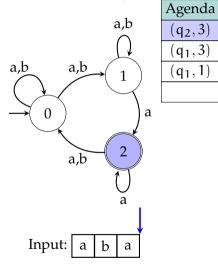
as search (with backtracking)



- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

as search (with backtracking)

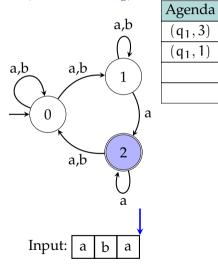


- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty

Backtrack otherwise

as search (with backtracking)



- 1. Start at qo
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input

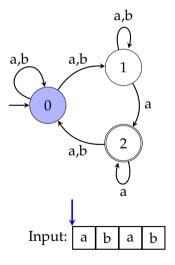
Accept if in an accepting state
Reject not in accepting state & agenda
empty

Backtrack otherwise

NFA recognition as search

summary

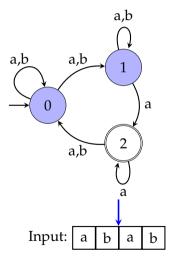
- Worst time complexity is exponential
 - Complexity is worse if we want to enumerate all derivations
- We used a stack as agenda, performing a depth-first search
- A queue would result in breadth-first search
- If we have a reasonable heuristic A* search may be an option
- Machine learning methods may also guide finding a fast or the best solution



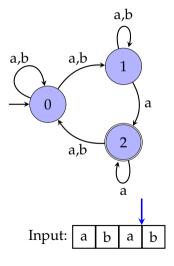
- 1. Start at qo
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept



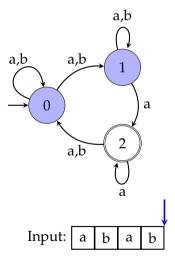
- 1. Start at qo
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept



- 1. Start at qo
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

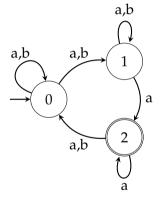


- 1. Start at qo
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept



- 1. Start at qo
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

parallel version



Input: a b a b

- 1. Start at q₀
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

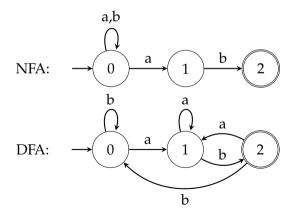
Note: the process is *deterministic*, and *finite-state*.

An exercise

Construct an NFA and a DFA for the language over $\Sigma = \{a,b\}$ where all sentences end with ab.

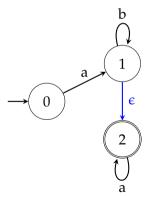
An exercise

Construct an NFA and a DFA for the language over $\Sigma = \{\alpha,b\}$ where all sentences end with $\alpha b.$



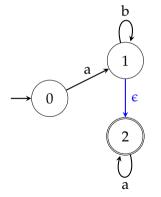
One more complication: ϵ transitions

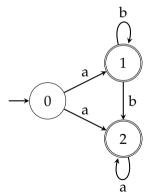
- An extension of NFA, ϵ -NFA, allows moving without consuming an input symbol, indicated by an ϵ -transition (sometimes called a λ -transition)
- Any ϵ -NFA can be converted to an NFA



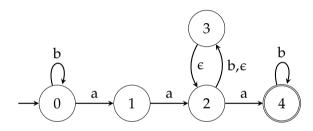
One more complication: ϵ transitions

- An extension of NFA, ϵ -NFA, allows moving without consuming an input symbol, indicated by an ϵ -transition (sometimes called a λ -transition)
- Any ϵ -NFA can be converted to an NFA





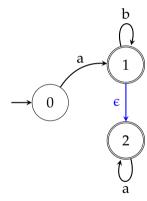
€-transitions need attention



- How does the (depth-first) NFA recognition algorithm we described earlier work on this automaton?
- Can we do without ϵ transitions?

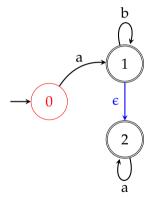
€ removal

• We start with finding the ϵ -closure of all states

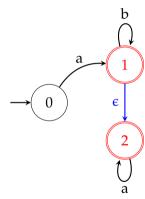


€ removal

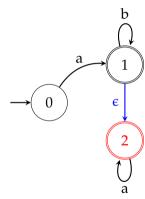
- We start with finding the $\epsilon\text{-}closure$ of all states
 - ϵ -closure(q_0) = { q_0 }



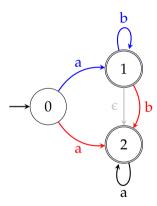
- We start with finding the $\epsilon\text{-}closure$ of all states
 - $-\epsilon$ -closure(q_0) = { q_0 }
 - $-\epsilon$ -closure $(q_1) = \{q_1, q_2\}$



- We start with finding the ϵ -closure of all states
 - $-\epsilon$ -closure(q_0) = { q_0 }
 - $-\epsilon$ -closure(q_1) = { q_1 , q_2 }
 - ϵ -closure(q_2) = { q_2 }



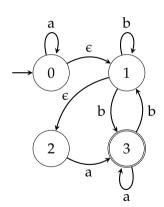
- We start with finding the ϵ -closure of all states
 - $-\epsilon$ -closure(q_0) = { q_0 }
 - $-\epsilon$ -closure(q_1) = { q_1 , q_2 }
 - $-\epsilon$ -closure(q_2) = { q_2 }
- Replace each arc to each state with arc(s) to all states in the ϵ -closure of the state



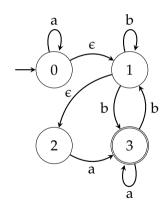
€ removal

a(nother) solution with the transition table 1

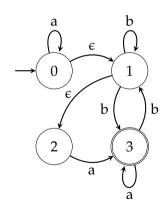
transition table



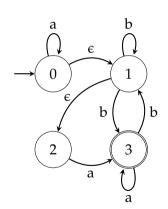
trar	transition table								
		$egin{array}{ccc} & symbol & & & & & & & & & & & & & & & & & & &$							
		a	b	ϵ					
	\rightarrow 0	0	Ø	1					
state	1	Ø	1,3	2					
st	2	3	Ø	Ø					
	*3	3	1	Ø					



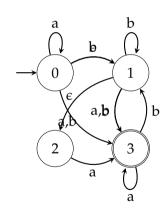
transition table									
		$egin{array}{cccccccccccccccccccccccccccccccccccc$							
		\mathfrak{a}	b	ϵ	$oldsymbol{\epsilon}^*$				
state	\rightarrow 0	0	Ø	1	0,1,2				
	1	Ø	1,3	2	1,2				
	2	3	Ø	Ø	2				
	*3	3	1	Ø	3				



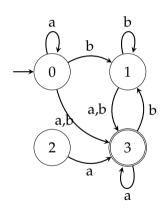
			sy	mbol				symbol	
		a		ϵ				a	b
		0	Ø	1	0,1,2	\Rightarrow	\rightarrow 0	0,1,2	1,3
state	1		1,3	2	1,2	,	1	1,2,3	1,2,3
st	2	3	Ø	Ø	2		2	3	Ø
	*3	3	1	Ø	3		*3	3	1,2



trar	nsitior	n tab	le						
	symbol							syn	ıbol
		a	b	ϵ	$oldsymbol{\epsilon}^*$			a	b
	\rightarrow 0	0	Ø	1	0,1,2	\Rightarrow	\rightarrow 0	0,1,2	1,3
state	1	Ø	1,3	2	1,2	,	1	1,2,3	1,2,3
st	2	3	Ø	Ø	2		2	3	Ø
	*3	3	1	Ø	3		*3	3	1,2

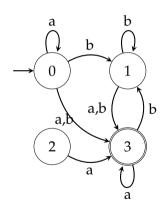


trar	nsitior	n tab	le						
	symbol							syn	ıbol
		a	b	ϵ	$oldsymbol{\epsilon}^*$			a	b
	\rightarrow 0	0	Ø	1	0,1,2	\Rightarrow	\rightarrow 0	0,1,2	1,3
state	1	Ø	1,3	2	1,2	,	1	1,2,3	1,2,3
st	2	3	Ø	Ø	2		2	3	Ø
	*3	3	1	Ø	3		*3	3	1,2

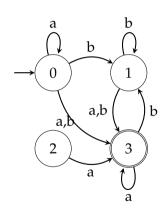


€ removal

trar	sition	n tab	le							
			sy	mbol				symbol		
		\mathfrak{a}	b	ϵ	$oldsymbol{\epsilon}^*$			a	b	
	\rightarrow 0	0	Ø	1	0,1,2	\Rightarrow	\rightarrow 0	0,1,2	1,3	
state	1	Ø	1,3	2	1,2	,	1	1,2,3	1,2,3	
st	2	3	Ø	Ø	2		2	3	Ø	
	*3	3	1	Ø	3		*3	3	1,2	



trar	nsitior	ı tab	le						
			sy	mbol				syn	ıbol
		a	b	ϵ	$oldsymbol{\epsilon}^*$			a	b
	\rightarrow 0	0	Ø	1	0,1,2	\Rightarrow	\rightarrow 0	0,1,2	1,3
state	1	Ø	1,3	2	1,2	,	1	1,2,3	1,2,3
st	2	3	Ø	Ø	2		2	3	Ø
	*3	3	1	Ø	3		*3	3	1,2



NFA-DFA equivalence

- The language recognized by every NFA is recognized by some DFA
- The set of DFA is a subset of the set of NFA (a DFA is also an NFA)
- The same is true for ϵ -NFA
- All recognize/generate regular languages
- NFA can automatically be converted to the equivalent DFA

- NFA (or ϵ -NFA) are often easier to construct
 - Intuitive for humans (cf. earlier exercise)
 - Some representations are easy to convert to NFA rather than DFA, e.g., regular expressions
- NFA may require less memory (fewer states)

- NFA (or ϵ -NFA) are often easier to construct
 - Intuitive for humans (cf. earlier exercise)
 - Some representations are easy to convert to NFA rather than DFA, e.g., regular expressions
- NFA may require less memory (fewer states)

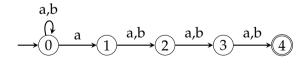
A quick exercise

1. Construct (draw) an NFA for the language over $\Sigma = \{a, b\}$, such that 4th symbol from the end is an α

- NFA (or ϵ -NFA) are often easier to construct
 - Intuitive for humans (cf. earlier exercise)
 - Some representations are easy to convert to NFA rather than DFA, e.g., regular expressions
- NFA may require less memory (fewer states)

A quick exercise

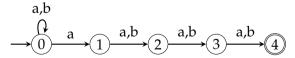
1. Construct (draw) an NFA for the language over $\Sigma = \{a, b\}$, such that 4th symbol from the end is an α



- NFA (or ϵ -NFA) are often easier to construct
 - Intuitive for humans (cf. earlier exercise)
 - Some representations are easy to convert to NFA rather than DFA, e.g., regular expressions
- NFA may require less memory (fewer states)

A quick exercise - and a not-so-quick one

1. Construct (draw) an NFA for the language over $\Sigma = \{a, b\}$, such that 4th symbol from the end is an α



2. Construct a DFA for the same language

Summary

- FSA are efficient tools with many applications
- FSA have two flavors: DFA, NFA (or maybe three: ε-NFA)
- DFA recognition is linear, recognition with NFA may require exponential time
- Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3) (and its successive editions), Jurafsky and Martin (2009, Ch. 2)

Next:

- FSA determinization, minimization
- Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3) (and its successive editions), Jurafsky and Martin (2009, Ch. 2)

Acknowledgments, credits, references

- Hopcroft, John E. and Jeffrey D. Ullman (1979). *Introduction to Automata Theory, Languages, and Computation*. Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley. ISBN: 9780201029888.
- Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. second edition. Pearson Prentice Hall. ISBN: 978-0-13-504196-3.

blank

A.2

blank

blank