#### FSA and regular languages Data Structures and Algorithms for Computational Linguistics III (ISCL-BA-07)

#### Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

University of Tübingen Seminar für Sprachwissenschaft

Winter Semester 2020/21

version: 1cce9c9+@2021-02-17

#### Recap: languages and automata

- Recognizing strings from a language defined by a grammar is a fundamental question in computer science
- The efficiency of computation, and required properties of computing device depending on the grammar (and the language)
- A well-known hierarchy of grammars both in computer science and linguistics is the *Chomsky hierarchy*
- Each grammar in the Chomsky hierarchy corresponds to an abstract computing device (an automaton)
- The class of *regular grammars* are the class that corresponds to *finite state automata*

#### Chomsky hierarchy and automata

| Grammar class              | Rules                                                                                                         | Automata                |
|----------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------|
| Unrestricted grammars      | $lpha { ightarrow} eta$                                                                                       | Turing machines         |
| Context-sensitive grammars | $\alpha \land \beta \rightarrow \alpha \gamma \beta$                                                          | Linear-bounded automata |
| Context-free grammars      | $A { ightarrow} lpha$                                                                                         | Pushdown automata       |
| Regular grammars           | $ \begin{array}{c c} A \rightarrow a & A \rightarrow a \\ A \rightarrow a B & A \rightarrow B a \end{array} $ | Finite state automata   |

#### Regular grammars: definition

- A regular grammar is a tuple  $G = (\Sigma, N, S, R)$  where
  - $\Sigma$  is an alphabet of terminal symbols
  - $\mathbb N\;$  are a set of non-terminal symbols
  - S is a special 'start' symbol  $\in N$
  - R~ is a set of rewrite rules following one of the following patterns (A, B  $\in$  N,  $a \in \Sigma$ ,  $\varepsilon$  is the empty string)

| Left regular                | Right regular               |
|-----------------------------|-----------------------------|
| 1. $A \rightarrow a$        | 1. $A \rightarrow a$        |
| 2. $A \rightarrow Ba$       | 2. $A \rightarrow aB$       |
| 3. $A \rightarrow \epsilon$ | 3. $A \rightarrow \epsilon$ |

Regular languages: some properties/operations

- $\mathcal{L}_1\mathcal{L}_2$  Concatenation of two languages  $\mathcal{L}_1$  and  $\mathcal{L}_2$ : any sentence of  $\mathcal{L}_1$  followed by any sentence of  $\mathcal{L}_2$ 
  - $\mathcal{L}^*\;$  Kleene star of  $\mathcal{L}\colon \mathcal{L}$  concatenated by itself 0 or more times
  - $\mathcal{L}^{\mathsf{R}}\;$  Reverse of  $\mathcal{L} :$  reverse of any string in  $\mathcal{L}\;$ 
    - $\overline{\mathcal{L}}$  Complement of  $\mathcal{L}$ : all strings in  $\Sigma_{\mathcal{L}}^*$  except the ones in  $\mathcal{L}$   $(\Sigma_{\mathcal{L}}^* \mathcal{L})$
- $\mathcal{L}_1 \cup \mathcal{L}_2$  Union of languages  $\mathcal{L}_1$  and  $\mathcal{L}_2$ : strings that are in any of the languages
- $\mathcal{L}_1 \cap \mathcal{L}_2$  Intersection of languages  $\mathcal{L}_1$  and  $\mathcal{L}_2$ : strings that are in both languages

Regular languages are closed under all of these operations.

### Three ways to define a regular language

- A language is regular if there is regular grammar that generates/recognizes it
- A language is regular if there is an FSA that generates/recognizes it
- A language is regular regular if we can define a regular expressions for the language

### **Regular expressions**

- Every regular language (RL) can be expressed by a regular expression (RE), and every RE defines a RL
- A RE **e** defines a RL  $\mathcal{L}(\mathbf{e})$
- Relations between RE and RL
  - $\mathcal{L}(\emptyset) = \emptyset,$  $- \mathcal{L}(\varepsilon) = \varepsilon,$  $- \mathcal{L}(a) = a$  $- \mathcal{L}(ab) = \mathcal{L}(a)\mathcal{L}(b)$  $- \mathcal{L}(a^*) = \mathcal{L}(a)^*$

*L*(a|b) = *L*(a) ∪ *L*(b)
 (some author use the notation a+b,
 we will use a|b as in many practical
 implementations)

where,  $a,b\in\Sigma,$   $\varepsilon$  is empty string,  $\varnothing$  is the language that accepts nothing (e.g.,  $\Sigma^*-\Sigma^*)$ 

• Note: no standard complement and intersection in RE

# Regular expressions

and some extensions

- Kleene star (a\*), concatenation (ab) and union (a|b) are the basic operations
- Parentheses can be used to group the sub-expressions. Otherwise, the priority of the operators as listed above a|bc\* = a|(b(c\*))
- In practice some short-hand notations are common
- And some non-regular extensions, like (a\*)b\1 (sometimes the term *regexp* is used for expressions with non-regular extensions)

# Some properties of regular expressions

Useful identities for simplifying regular expressions

- u|(v|w) = (u|v)|w
- u | v = v | u
- u(v|w) = uv|uw
- $\mathbf{u} \mid \varnothing = \mathbf{u}$
- $u\varepsilon = \varepsilon u = u$
- $\emptyset u = \emptyset$
- u(vw) = (uv)w
- $\varnothing * = \varepsilon$
- $\epsilon * = \epsilon$
- (u\*)\* = u\*
- u | u = u
- $\mathbf{u} \mid \varnothing = \mathbf{u}$
- (u|v)\* = (u\*|v\*)\*
- u\*|e = u\*

Ç. Çöltekin, SfS / University of Tübingen

# Some properties of regular expressions

Useful identities for simplifying regular expressions

- u|(v|w) = (u|v)|w
- u | v = v | u
- u(v|w) = uv|uw
- $\mathbf{u} \mid \varnothing = \mathbf{u}$
- $u\varepsilon = \varepsilon u = u$
- $\emptyset u = \emptyset$
- u(vw) = (uv)w
- $\varnothing * = \varepsilon$
- $\epsilon * = \epsilon$
- (u\*)\* = u\*
- u | u = u
- $\mathbf{u} \mid \varnothing = \mathbf{u}$
- (u|v)\* = (u\*|v\*)\*
- u\*|e = u\*

Ç. Çöltekin, SfS / University of Tübingen

| An e | ercise         |  |
|------|----------------|--|
|      | Simplify a ab* |  |
|      | 1 9 1          |  |
|      |                |  |
|      |                |  |

# Some properties of regular expressions

Useful identities for simplifying regular expressions

- u|(v|w) = (u|v)|w
- u | v = v | u
- u(v|w) = uv|uw
- $\mathbf{u} \mid \varnothing = \mathbf{u}$
- $u\varepsilon = \varepsilon u = u$
- $\emptyset u = \emptyset$
- u(vw) = (uv)w
- $\varnothing * = \varepsilon$
- $\epsilon * = \epsilon$
- (u\*)\* = u\*
- u | u = u
- $\mathbf{u} \mid \varnothing = \mathbf{u}$

•  $u*|\epsilon = u*$ 

Ç. Çöltekin, SfS / University of Tübingen

| An exercise                      |
|----------------------------------|
| Simplify a ab*<br>a ab* = aɛ ab* |
|                                  |

# Some properties of regular expressions

Useful identities for simplifying regular expressions

- u|(v|w) = (u|v)|w
- u | v = v | u
- u(v|w) = uv|uw
- $\mathbf{u} \mid \varnothing = \mathbf{u}$
- $u\varepsilon = \varepsilon u = u$
- $\emptyset u = \emptyset$
- u(vw) = (uv)w
- $\varnothing * = \varepsilon$
- $\epsilon * = \epsilon$
- (u\*)\* = u\*
- u | u = u
- $\mathbf{u} \mid \varnothing = \mathbf{u}$
- (u|v)\* = (u\*|v\*)\*
- u\*|e = u\*

| C. Cöltekin, SfS / University of Tüb | oingen |
|--------------------------------------|--------|
|--------------------------------------|--------|

| Simplify a ab*   |  |  |
|------------------|--|--|
| a€ ab*           |  |  |
| $a(\epsilon b*)$ |  |  |
|                  |  |  |
|                  |  |  |

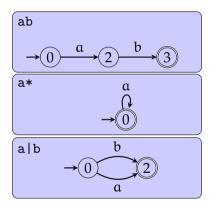
# Some properties of regular expressions

Useful identities for simplifying regular expressions

- u|(v|w) = (u|v)|w
- u | v = v | u
- u(v|w) = uv|uw
- $\mathbf{u} \mid \varnothing = \mathbf{u}$
- $u\varepsilon = \varepsilon u = u$
- $\emptyset u = \emptyset$
- u(vw) = (uv)w
- $\varnothing * = \varepsilon$
- $\epsilon * = \epsilon$
- (u\*)\* = u\*
- u | u = u
- $\mathbf{u} \mid \varnothing = \mathbf{u}$
- (u|v)\* = (u\*|v\*)\*
- $u*|\epsilon = u*$

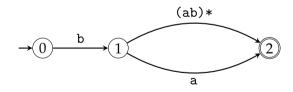
| An exercise    |   |                  |
|----------------|---|------------------|
| Simplify a ab* |   |                  |
| a ab*          | = | a∈ ab*           |
|                | = | $a(\epsilon b*)$ |
|                | = | ab*              |
|                |   |                  |

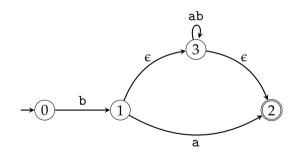
### Converting regular expressions to FSA

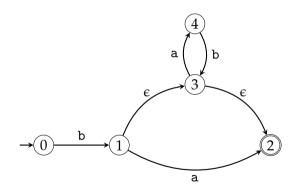


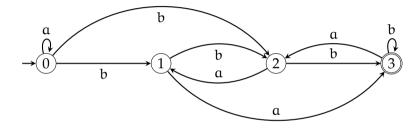
- For more complex expressions, one can replace the paths for individual symbols with corresponding automata
- Using  $\varepsilon$  transitions may ease the task
- The reverse conversion (from automata to regular expressions) is also easy:
  - identify the patterns on the left, collapse paths to single transitions with regular expressions

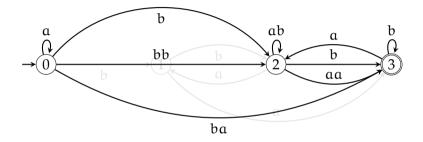


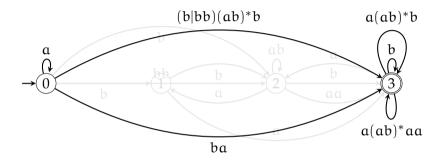


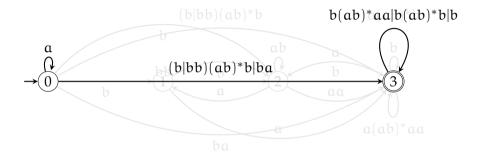


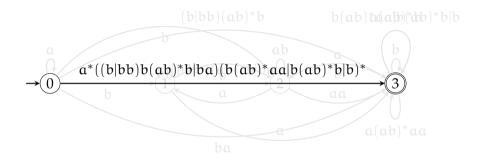


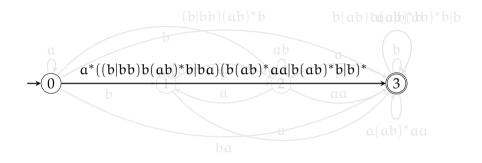










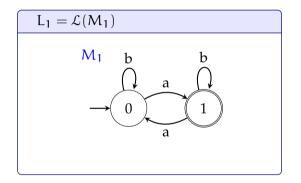


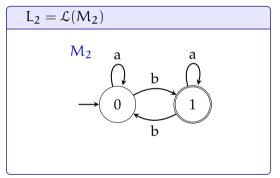
• The general idea: remove (intermediate) states, replacing edge labels with regular expressions

An exercise: simplify the resulting regular expressions

# Two example FSA

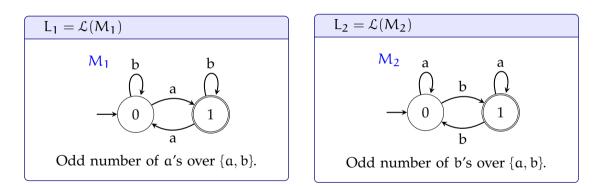
what languages do they accept?





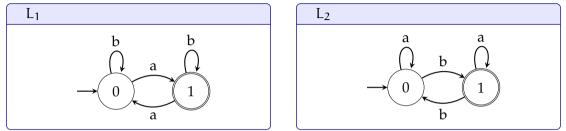
#### Two example FSA

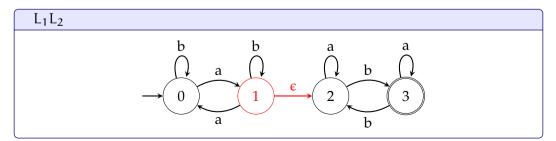
what languages do they accept?



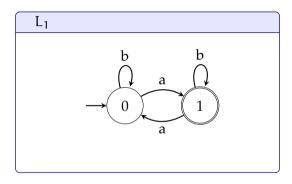
We will use these languages and automata for demonstration.

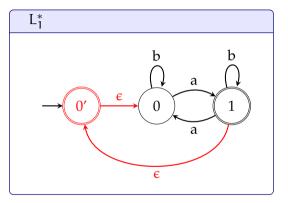
#### Concatenation



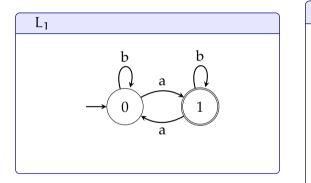


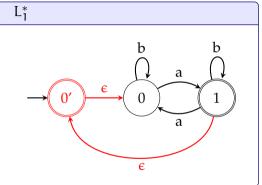
#### Kleene star





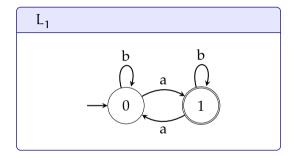
#### Kleene star

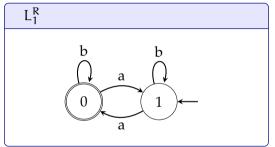




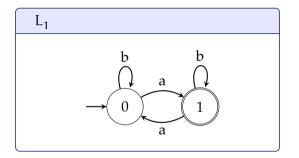
• What if there were more than one accepting states?

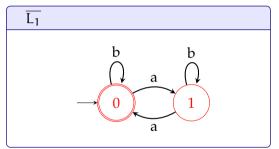
#### Reversal



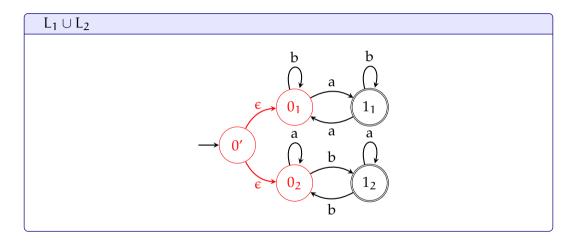


# Complement

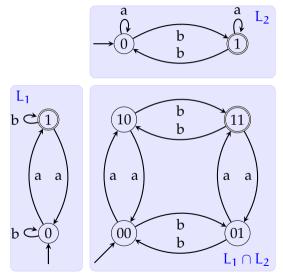




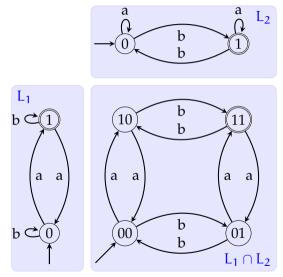
#### Union



#### Intersection



#### Intersection





 $L_1\cap L_2=\overline{\overline{L_1}\cup\overline{L_2}}$ 

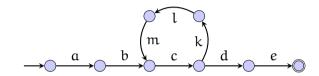
#### Closure properties of regular languages

- Since results of all the operations we studied are FSA: Regular languages are closed under
  - Concatenation
  - Kleene star
  - Reversal
  - Complement
  - Union
  - Intersection

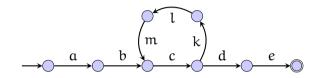
#### Is a language regular? — or not

- To show that a language is regular, it is sufficient to find an FSA that recognizes it.
- Showing that a language is *not* regular is more involved
- We will study a method based on *pumping lemma*

• What is the length of longest string generated by this FSA?



• What is the length of longest string generated by this FSA?



- What is the length of longest string generated by this FSA?
- Any FSA generating an infinite language has to have a loop (application of recursive rule(s) in the grammar)
- Part of every string longer than some number will include repetition of the same substring ('cklm' above)

definition

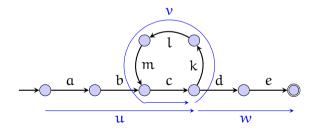
For every regular language L, there exist an integer p such that a string  $x \in L$  can be factored as x = uvw,

- $uv^iw \in L, \forall i \ge 0$
- $\bullet \ \nu \neq \varepsilon$
- $|uv| \leqslant p$

definition

For every regular language L, there exist an integer p such that a string  $x \in L$  can be factored as x = uvw,

- $uv^iw \in L, \forall i \ge 0$
- $\nu \neq \varepsilon$
- $|uv| \leqslant p$



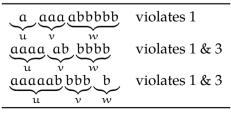
#### How to use pumping lemma

- We use pumping lemma to prove that a language is not regular
- Proof is by contradiction:
  - Assume the language is regular
  - Find a string x in the language, for all splits of x = uvw, at least one of the pumping lemma conditions does not hold
    - $uv^iw \in L \ (\forall i \ge 0)$
    - $\nu \neq \varepsilon$
    - $|uv| \leq p$

### Pumping lemma example

prove  $L = a^n b^n$  is not regular

- Assume L is regular: there must be a p such that, if uvw is in the language
  - 1.  $uv^{i}w \in L \ (\forall i \ge 0)$
  - 2.  $\nu \neq \epsilon$
  - 3.  $|uv| \leq p$
- Pick the string  $a^p b^p$
- For the sake of example, assume p = 5, x = aaaaabbbbb
- Three different ways to split



### Wrapping up

- FSA and regular expressions express regular languages
- Regular languages and FSA are closed under
  - Concatenation Reversal
  - Kleene star
  - Complement

- Union
- Intersection
- To prove a language is regular, it is sufficient to find a regular expression or FSA for it
- To prove a language is not regular, we can use pumping lemma

## Wrapping up

- FSA and regular expressions express regular languages
- Regular languages and FSA are closed under
  - Concatenation Reversal
  - Kleene star
  - Complement

- Union
- Intersection
- To prove a language is regular, it is sufficient to find a regular expression or FSA for it
- To prove a language is not regular, we can use pumping lemma

Next:

- Finite state transducers (FSTs)
- Applications of FSA and FSTs
- Summary exam preparation/discussion

#### Acknowledgments, credits, references