Minimization of FSA

Data Structures and Algorithms for Computational Linguistics III (ISCL-BA-07)

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

University of Tübingen Seminar für Sprachwissenschaft

Winter Semester 2020/21

version: ade53b6 @2021-02-25

DFA minimization

- For any regular language, there is a unique minimal DFA
- By finding the minimal DFA, we can also prove equivalence (or not) of different FSA and the languages they recognize
- In general the idea is:
 - Throw away unreachable states (easy)
 - Merge equivalent states
- There are two well-known algorithms for minimization:
 - Hopcroft's algorithm: find and eliminate equivalent states by partitioning the set of states
 - Brzozowski's algorithm: 'double reversal'

Finding equivalent states

Finding equivalent states

The edges leaving the group of nodes are identical. Their *right languages* are the same.

Finding equivalent states

The edges leaving the group of nodes are identical. Their *right languages* are the same.

• Accepting & non-accepting states form a partition

 $Q_1 = \{0, 1, 2, 3\}, Q_2 = \{4, 5\}$

• Accepting & non-accepting states form a partition

 $Q_1 = \{0, 1, 2, 3\}, Q_2 = \{4, 5\}$

• If any two nodes go to different sets for any of the symbols split

• Accepting & non-accepting states form a partition

 $Q_1 = \{0, 1, 2, 3\}, Q_2 = \{4, 5\}$

- If any two nodes go to different sets for any of the symbols split
- $Q_1 = \{0, 3\}, Q_3 = \{1\}, Q_4 = \{2\}, Q_2 = \{4, 5\}$

• Accepting & non-accepting states form a partition

 $Q_1 = \{0, 1, 2, 3\}, Q_2 = \{4, 5\}$

- If any two nodes go to different sets for any of the symbols split
- $Q_1 = \{0, 3\}, Q_3 = \{1\}, Q_4 = \{2\}, Q_2 = \{4, 5\}$
- Stop when we cannot split any of the sets, merge the indistinguishable states

tabular version

tabular version

• Create a state-by-state table, mark *distinguishable* pairs: (q_1, q_2) such that $(\Delta(q_1, x), \Delta(q_2, x))$ is a distinguishable pair for any $x \in \Sigma$

• Merge indistinguishable states

tabular version

- Merge indistinguishable states
- The algorithm can be improved by choosing which cell to visit carefully

double reverse (r), determinize (d)

double reverse (r), determinize (d)

double reverse (r), determinize (d)

a

2

01

double reverse (r), determinize (d)

double reverse (r), determinize (d)

An exercise

find the minumum DFA for the automaton below

Minimization algorithms

final remarks

- There are many versions of the 'partitioning' algorithm. General idea is to form equivalence classes based on *right-language* of each state.
- Partitioning algorithm has $O(n\log n)$ complexity
- 'Double reversal' algorithm has exponential worst-time complexity
- Double reversal algorithm can also be used with NFAs (resulting in the minimal equivalent DFA NFA minimization is intractable)
- In practice, there is no clear winner, different algorithms run faster on different input
- Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3), Jurafsky and Martin (2009, Ch. 2)

Minimization algorithms

final remarks

- There are many versions of the 'partitioning' algorithm. General idea is to form equivalence classes based on *right-language* of each state.
- Partitioning algorithm has $O(n\log n)$ complexity
- 'Double reversal' algorithm has exponential worst-time complexity
- Double reversal algorithm can also be used with NFAs (resulting in the minimal equivalent DFA NFA minimization is intractable)
- In practice, there is no clear winner, different algorithms run faster on different input
- Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3), Jurafsky and Martin (2009, Ch. 2)

Next:

• FSA determinization, minimization

Acknowledgments, credits, references

- Hopcroft, John E. and Jeffrey D. Ullman (1979). Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley. ISBN: 9780201029888.
- Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. second edition. Pearson Prentice Hall. ISBN: 978-0-13-504196-3.