String edit distance

Data Structures and Algorithms for Computational Linguistics III (ISCL-BA-07)

Çağrı Çöltekin
ccoltekin@sfs.uni-tuebingen.de
University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2020/21

Edit distance

- In many applications, we want to know how similar (or different) two string are
- Comparing two files (e.g., source code)
- Comparing two DNA sequences
- Spell checking
- Approximate string matching
- Determining similarity of two languages
- Machine translation
- The solution is typically formulated as the (inverse) cost of obtaining one of the strings from the other through a number of edit operations
- Once we obtain the optimal edit operations, we may (depending on the edit operations) also be able to determine the optimal alignment between the strings

Hamming distance

a simple distance metric between two sequences

- The Hamming distance measures number of different symbols in the corresponding positions

h	y	g	i	e	n	e
h	i	g	i	e	n	e

$0+1+0+0+0+0+0=1$

h	y	g	i	e	n		e
h	i	y	g	e	i		n

- Very easy/efficient calculation
- But cannot handle sequences of different lengths (consider hygene - hiygeine)

A family of edit distance problems

- The same overall idea applies to a number of well-known problems/solutions that differ in the type of operations allowed
- Hamming distance: only replacements
- Longest common subsequence: (LCS) insertions and deletions
- Levenshtein distance insertions, deletions and substitutions
- Levenshtein-Damerau distance insertions, deletions and substitutions and transpositions (swap) of adjacent symbols
- Naive solutions to all (except Hamming distance) have exponential time complexity
- Polynomial-time solution can be obtained using dynamic programming

Longest common subsequence (LCS)

Problem definition

- A subsequence is an order-preserving (but not necessarily continuous) sequence of symbols from a string (a version of the sequence where zero or more elements are removed)
- hyg, gn, yene, hen, gene are subsequences of hygiene
- Note that a subsequence does not have to be a substring (substrings are continuous)
- hyg, giene, ene are substrings of hygiene
- The longest common substring (LCS) of two strings is the longest string that is a subsequence of both strings
- LCS(hygiene, hiygien) = hygien
- LCS(hygiene, hygeine) = hygine / hygene
- LCS is exactly the problem solved by the UNIX diff utility
- It has wide-ranging applications from source-code comparison to bioinformatics (e.g., DNA sequencing)

LCS: a naive solution

- A simple solution is:

1. Enumerate all subsequences of the first string
2. Check if it is also a subsequence of the second string

- There are exponential number of subsequences of a string
- the string $a b c$ has 8 subsequences:
- abc: nothing removed
- $a b, a c, b c$: individual elements are removed
- a, b, c : length-2 subsequences are removed
- ϵ (empty string): abc removed
- For $a b c d$, we have subsequences of $a b c$ once with, and once without d
- Each additional symbol doubles the number of subsequences
- For strings of size n and m, the complexity of the brute-force algorithm is $\mathrm{O}\left(2^{\mathrm{n}} \mathrm{m}\right)$

LCS: recursive solution

demonstration

- Consider two strings $X x, Y y$ and their $\operatorname{LCS} Z z(X, Y, Z$ are possibly empty strings, x, y, z are characters)
- If $x=y$, then this character has to be part of the LCS, $x=y=z$, and Z must be the LCS of X and Y
- If $x \neq y$, there are three cases
$-x \neq y \neq z: Z z$ is also the LCS of X and Y
$-x=z: Z z$ is also the LCS of $X x$ and Y
$-y=z: Z z$ is also the LCS of X and $Y y$
- This leads to following recursive definition:

$$
\operatorname{LCS}(X x, Y y)= \begin{cases}\operatorname{LCS}(X, Y) x & \text { if } x=y \\ \text { longer of } \operatorname{LCS}(X x, Y) \text { and } \operatorname{LCS}(X, Y y) & \text { otherwise }\end{cases}
$$

LCS: divide-and-conquer

- Note the repeated computaion

LCS: dynamic programming

general sketch

- For string indexes i and j, of strings X and Y, if we need $\operatorname{LCS}\left(X_{i-1}, Y_{j-1}\right)$, $\operatorname{LCS}\left(X_{i-1}, Y_{j}\right), \operatorname{LCS}\left(X_{i 1}, Y_{j-}\right)$
- In the standard algorithm, we do not store the LCS, but the length of the LCS, $l_{i, j}$ for each i, j
- Once we fill in the matrix, the $l_{n, m}$ is the length of the LCS
- We can trace back and recover the LCS using the dynamic programming matrix

LCS with dynamic programming

demonstration

		0	1	2	3	4	5	6	7	8
		ϵ	h	i	y	g	e	i	n	e
0	ϵ									
1	h									
2	y									
3	g									
4	i									
5	e									
6	n									
7	e									

LCS with dynamic programming

demonstration

		0	1	2	3	4	5	6	7	8
		ϵ	h	i	y	g	e	i	n	e
0	ϵ	0	0	0	0	0	0	0	0	0
1	h	0	1	1	1	1	1	1	1	1
2	y	0	1	1	2	2	2	2	2	2
3	g	0	1	1	2	3	3	3	3	3
4	i	0	1	2	2	3	3	4	4	4
5	e	0	1	2	2	3	4	4	4	5
6	n	0	1	2	2	3	4	4	5	5
7	e	0	1	2	2	3	4	4	5	6

Complexity of filling the LCS matrix

```
l = np.zeros(shape=(n+1,m+1))
for i in range(n):
    for j in range(m):
        if X[i] == Y[i]:
            l[i+1,j+1] = l[i,j] + 1
        else:
            l[i+1,j+1] = max(l[i+1,j], l[i, j+1])
```

- Two loops up to n and m, the time complexity is $O(n m)$
- Similarly, the space complexity is also $\mathrm{O}(\mathrm{nm})$

Recovering the LCS from the matrix

Transforming one string to another

- The table (back arrows) also gives a set of edit operations to transform one string to anoter
- For LCS, opeartions are:
- copy (diagonal arrows in the demonstration)
- insert (left arrows in the demonstration - assuming original string is the vertical one)
- delete (up arrows in the demonstration - assuming original string is the vertical one)
- These also form an alignment between two strings
- Differnt set of edit operations recovered will yield the same LCS, but different alignments

LCS alignments

Alignments:
h-yg-iene
ciccicdcc
hiygei-ne
h-ygie-ne
ciccdcicc
hiyg-eine

LCS - some remarks

- We formulated the algorithm as optimizing the LCS
- Alternatively, we can consider costs assiciated with each operation:
- copy $=0$
- delete $=1$
- insert =1
- This is the typical application of LCS, as in diff
- In some applications we may want to have different costs for delete and insert (e.g., mapping lemmas to inflected forms of words)
- Similarly, we may want to assign different costs for different characters (e.g., higher cost to delete consonants in historical linguistics)

Levenshtein distance

definition

- Levenshtein difference between two strings is the total cost of insertions, deletions and substitutions
- With cost of 1 for all operations

$$
\operatorname{lev}(X x, Y y)= \begin{cases}\operatorname{len}(X) & \text { if } \operatorname{len}(Y y)=0 \\
\operatorname{len}(Y) & \text { if } \operatorname{len}(X x)=0 \\
\operatorname{lev}(X, Y) & \text { if } x=y \\
1+\min \left\{\begin{array}{l}
\operatorname{lev}(X, Y y) \\
\operatorname{lev}(X x, Y) \\
\operatorname{lev}(X, Y)
\end{array}\right. & \end{cases}
$$

- Naive recursion (as defined above), again, is intractable
- But, the same dynamic programming method works

Levenshtein distance

demonstration

		0	1	2	3	4	5	6	7	8
		ϵ	h	i	y	g	e	i	n	e
0	ϵ									
1	h									
2	y									
3	g									
4	1									
5	e									
6	n									
7	e									

Levenshtein distance

demonstration

		¢	1	2	3	4	5	6	7	8	
		h	i	y	g	e	i	n	e		
0	ϵ		0	1	2	3	4	5	6	7	8
1	h	1	0	1	2	3	4	5	6	7	
2	y	2	1	1	1	2	3	4	5	6	
3	g	3	2	2	2	1	2	3	4	5	
4	i	4	3	2	3	2	2	2	3	4	
5	e	5	4	3	3	3	2	3	3	3	
6	n	6	5	4	4	4	3	3	3	4	
7	e	7	6	5	5	5	4	4	4	3	

Levenshtein distance

edits and alignments

		0	1	2	3	4	5	6	7	8
		ϵ	h	i	y	g	e	i	n	e
0	ϵ	0	1	2	3	4	5	6	7	8
1	h	1	0	-1	2	3	4	5	6	7
2	y	2	1	1	${ }^{1}$	2	3	4	5	6
3	g	3	2	2	2	1	${ }^{-2}$	3	4	5
4	i	4	3	2	3	2	${ }_{2}$	${ }_{2}$	3	4
5	e	5	4	3	3	3	2	53	3	3
6	n	6	5	4	4	4	3	3	${ }_{3}$	4
7	e	7	6	5	5	5	4	4	4	3

Edit distance: extensions and variations

- Another possible operation we did not cover is swap (or transpose), which is useful for applications like spell checking
- In some applications (e.g., machine translation, OCR correction) we may want to have one-to-many or many-to-one alignments
- Additional requirements often introduce additional complexity
- It is sometimes useful to learn costs from data

Summary

- Edit distance is an important problem in many fields including computational linguistics
- A number of related problems can be efficiently solved by dynamic programming
- Edit distance is also important for approximate string matching and alignment
- Reading suggestion: Goodrich, Tamassia, and Goldwasser (2013, chapter 13),Jurafsky and Martin (2009, section 3.11, or 2.5 in online draft)

Next:

- Algorithms on strings: tries
- Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 13),

Acknowledgments, credits, references

(Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013). Data Structures and Algorithms in Python. John Wiley \& Sons, Incorporated. Isbn: 9781118476734.

围 Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. second edition. Pearson Prentice Hall. isbn: 978-0-13-504196-3.

