
Analysis of Algorithms
Data Structures and Algorithms for Computational Linguistics III

(ISCL-BA-07)

Çağrı Çöltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2020/21

version: 9cc6830 @2020-12-03



Introduction Preliminaries Asymptotic analysis

What are we analyzing?

• So far, we frequently asked: ‘can we do better?’

• Now, we turn to the questions of

– what is better?
– how do we know an algorithm is better than the other?

• There are many properties that we may want to improve

– correctness
– robustness
– simplicity
– …
– In this lecture, efficiency will be our focus

• in particular time efficiency/complexity

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 1 / 31



Introduction Preliminaries Asymptotic analysis

What are we analyzing?

• So far, we frequently asked: ‘can we do better?’
• Now, we turn to the questions of

– what is better?
– how do we know an algorithm is better than the other?

• There are many properties that we may want to improve

– correctness
– robustness
– simplicity
– …
– In this lecture, efficiency will be our focus

• in particular time efficiency/complexity

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 1 / 31



Introduction Preliminaries Asymptotic analysis

What are we analyzing?

• So far, we frequently asked: ‘can we do better?’
• Now, we turn to the questions of

– what is better?
– how do we know an algorithm is better than the other?

• There are many properties that we may want to improve
– correctness
– robustness
– simplicity
– …
– In this lecture, efficiency will be our focus

• in particular time efficiency/complexity

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 1 / 31



Introduction Preliminaries Asymptotic analysis

How to determine running time of an algorithm?
write the code, experiment

• A possible approach:
– Implement the algorithm
– Test with varying input
– Analyze the results

• A few issues with this approach:
– Implementing something that does not
work is not fun

– It is often not possible cover all potential
inputs

– If your version takes 10 seconds less than a
version reported 10 years ago, do you really
have an improvement?

• A formal approach offers some help here

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 2 / 31



Introduction Preliminaries Asymptotic analysis

How to determine running time of an algorithm?
write the code, experiment

• A possible approach:
– Implement the algorithm
– Test with varying input
– Analyze the results

• A few issues with this approach:
– Implementing something that does not
work is not fun

– It is often not possible cover all potential
inputs

– If your version takes 10 seconds less than a
version reported 10 years ago, do you really
have an improvement?

• A formal approach offers some help here

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 2 / 31



Introduction Preliminaries Asymptotic analysis

How to determine running time of an algorithm?
write the code, experiment

• A possible approach:
– Implement the algorithm
– Test with varying input
– Analyze the results

• A few issues with this approach:
– Implementing something that does not
work is not fun

– It is often not possible cover all potential
inputs

– If your version takes 10 seconds less than a
version reported 10 years ago, do you really
have an improvement?

• A formal approach offers some help here

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 2 / 31



Introduction Preliminaries Asymptotic analysis

Some functions to know about

Family Definition
Constant f(n) = c

Logarithmic f(n) = logb n

Linear f(n) = n

N log N f(n) = n logn
Quadratic f(n) = n2

Cubic f(n) = n3

Other polynomials f(n) = nk, for k > 3

Exponential f(n) = bn, for b > 1

Factorial f(n) = n!

• We will use these functions to characterize running times of algorithms

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 3 / 31



Introduction Preliminaries Asymptotic analysis

Some functions to know about
the picture - why we care about their difference

10 20 30 40 50 60 70 80 90 100

0

500

1,000

1,500

2,000

n

f
(n

)

O(logn)

O(n)

O(n logn)

O(n2)

O(n3)

O(2n)

O(n!)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 4 / 31



Introduction Preliminaries Asymptotic analysis

Some functions to know about
the bigger picture

101 103 105 107 109 1011 1013 1015 1017 1019

100

105

1010

1015

1020

n

f(
n)

O(logn)

O(n)

O(n logn)

O(n2)

O(n3)

O(2n)

O(n!)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 5 / 31



Introduction Preliminaries Asymptotic analysis

A few facts about logarithms
• Logarithm is the inverse of exponentiation:

x = logb n ⇐⇒ bx = n

• We will mostly use base-2 logarithms. For us, no-base means base-2
• Additional properties:

log xy = log x+ log y

log
x

y
= log x− log y

log xa = a log x

logb x =
logk x

logk b

• Logarithmic functions grow (much) slower than linear functions
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 6 / 31



Introduction Preliminaries Asymptotic analysis

Polynomials

• A degree-0 polynomial is a constant function (f(n) = c)
• A degree-1 is linear (f(n) = n+ c)
• A degree-2 is quadratic (f(n) = n2 + n+ c)
• …
• We generally drop the lower order terms (soon we’ll explain why)
• Sometimes it will be useful to remember that

1+ 2+ 3+ . . .+ n =
n(n+ 1)

2

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 7 / 31



Introduction Preliminaries Asymptotic analysis

Combinations and permutations

• n! = n× (n− 1)× . . .× 2× 1

• Permutations:

P(n,k) = n× (n− 1)× . . .× (n− k− 1) =
n!

(n− k)!

• Combinations ‘n choose k’:

C(n,k) =

(
n

k

)
=

P(n,k)

P(k,k)
=

n!

(n− k)!× k!

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 8 / 31



Introduction Preliminaries Asymptotic analysis

Proof by induction

• Induction is an important proof technique
• It is often used for both proving the correctness and running times of
algorithms

• It works if we can enumerate the steps of an algorithm (loops, recursion)
– Show that base case holds
– Assume the result is correct for n, show that it also holds for n+ 1

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 9 / 31



Introduction Preliminaries Asymptotic analysis

Proof by induction
Example: show that 1+ 2+ 3+ . . .+ n = n(n+ 1)/2

• Base case, for n=1
(1× 2)/2 = 1

• Assuming
n∑

i=1

i =
n(n+ 1)

2

we need to show that
n+1∑
i=1

i =
(n+ 1)(n+ 2)

2

n(n+ 1)

2
+ (n+ 1) =

n(n+ 1) + 2(n+ 1)

2
=

(n+ 1)(n+ 2)

2

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 10 / 31



Introduction Preliminaries Asymptotic analysis

Proof by induction
Example: show that 1+ 2+ 3+ . . .+ n = n(n+ 1)/2

• Base case, for n=1
(1× 2)/2 = 1

• Assuming
n∑

i=1

i =
n(n+ 1)

2

we need to show that
n+1∑
i=1

i =
(n+ 1)(n+ 2)

2

n(n+ 1)

2
+ (n+ 1)

=
n(n+ 1) + 2(n+ 1)

2
=

(n+ 1)(n+ 2)

2

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 10 / 31



Introduction Preliminaries Asymptotic analysis

Proof by induction
Example: show that 1+ 2+ 3+ . . .+ n = n(n+ 1)/2

• Base case, for n=1
(1× 2)/2 = 1

• Assuming
n∑

i=1

i =
n(n+ 1)

2

we need to show that
n+1∑
i=1

i =
(n+ 1)(n+ 2)

2

n(n+ 1)

2
+ (n+ 1) =

n(n+ 1) + 2(n+ 1)

2

=
(n+ 1)(n+ 2)

2

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 10 / 31



Introduction Preliminaries Asymptotic analysis

Proof by induction
Example: show that 1+ 2+ 3+ . . .+ n = n(n+ 1)/2

• Base case, for n=1
(1× 2)/2 = 1

• Assuming
n∑

i=1

i =
n(n+ 1)

2

we need to show that
n+1∑
i=1

i =
(n+ 1)(n+ 2)

2

n(n+ 1)

2
+ (n+ 1) =

n(n+ 1) + 2(n+ 1)

2
=

(n+ 1)(n+ 2)

2

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 10 / 31



Introduction Preliminaries Asymptotic analysis

Formal analysis of algorithm running time

• We are focusing on characterizing running time of algorithms
• The running time is characterized as a function of input size
• We are aiming for an analysis method

– independent of hardware / software environment
– does not require implementation before analysis
– considers all inputs possible

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 11 / 31



Introduction Preliminaries Asymptotic analysis

How much hardware independence?

• Characterized by random access memory (RAM) (e.g., in comparison to a
sequential memory, like a tape)

• We assume the system can perform some primitive operations (addition,
comparison) in constant time

• The data and the instructions are stored in the RAM
• The processor fetches them as needed, and executes following the
instructions

• This is largely true for any computing system we use in practice

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 12 / 31



Introduction Preliminaries Asymptotic analysis

How much hardware independence?
quite, but not completely: we assume a RAM model of computing

• Characterized by random access memory (RAM) (e.g., in comparison to a
sequential memory, like a tape)

• We assume the system can perform some primitive operations (addition,
comparison) in constant time

• The data and the instructions are stored in the RAM
• The processor fetches them as needed, and executes following the
instructions

• This is largely true for any computing system we use in practice

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 12 / 31



Introduction Preliminaries Asymptotic analysis

RAM model: an example

pr
oc

es
sin

g
un

it

R0

R2

R3

R4

0
load 101
add 112
compare 123
jump 74
…5

6
7
8
9

10
11
12
13
14
15

• Processing unit does basic
operations in constant time

• Any memory cell with the address
can be accessed in equal (constant)
time

• The instructions as well as the data
is kept in the memory

• There may be other, specialized
registers

• Modern processing units often also
employ a ‘cache’

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 13 / 31



Introduction Preliminaries Asymptotic analysis

Formal analysis of running time

• Simply count the number of primitive operations
• Primitive operations include:

– Assignment
– Arithmetic operations
– Comparing primitive data types (e.g., numbers)
– Accessing a single memory location
– Function calls, return from functions

• Not primitive operations:
– loops, recursion
– comparing sequences

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 14 / 31



Introduction Preliminaries Asymptotic analysis

Focus on the worst case

• Algorithms are generally faster on certain input than others
• In most cases, we are interested in the worst case analysis

– Guaranteeing worst case is important
– It is also relatively easier: we need to identify the worst-case input

• Average case analysis is also useful, but
– requires defining a distribution over possible inputs
– often more challenging

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 15 / 31



Introduction Preliminaries Asymptotic analysis

Counting primitive operations
example: nearest points, the naive algorithm

def shortest_distance(points):
n = len(points) # 1 (constant?)
min = 0 # 1 (constant)
for i in range(n): # n times

for j in range(i): # i times
d = distance(points[i], points[j]) # 1 (constant)
if min > d: # 1 (constant)

min = d # 1 (constant)
return min # 1 (constant)

T(n) = 2+ (1+ 2+ 3+ . . .+ n− 1)× 3+ 1

= 3× (n− 1)(n− 2)

2
+ 3

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 16 / 31



Introduction Preliminaries Asymptotic analysis

Big-O notation

• Big-O notation is used for indicating an upper bound on running time of an
algorithm as a function of running time

• If running time of an algorithm is O(f(n)), its running time grows
proportional to f(n) as the input size n grows

• More formally, given functions f(n) and g(n), we say that f(n) is O(g(n)) if
there is a constant c > 0 and integer n0 ⩾ 1 such that

f(n) ⩽ c× g(n) for n ⩾ n0

• Sometimes the notation f(n) = O(g(n)) is also used, but beware: this equal
sign is not symmetric

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 17 / 31



Introduction Preliminaries Asymptotic analysis

Big-O example
T(n) = n2 − 2n+ 5 is O(n2)

0 20 40 60 80 100

0

2,000

4,000

6,000

8,000

10,000

n

T
(n

)

n2 − 2n+ 5

n2

Not surprising: T(n) < n2 for n ⩾ 3

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 18 / 31



Introduction Preliminaries Asymptotic analysis

Big-O example
T(n) = n2 − 2n+ 5 is O(n2)

0 1 2 3 4 5

0

10

20

n

T
(n

)

n2 − 2n+ 5

n2

Not surprising: T(n) < n2 for n ⩾ 3

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 18 / 31



Introduction Preliminaries Asymptotic analysis

Big-O, another example
T(n) = n2 + 3n is O(n2)

0 1 2 3 4 5

0

10

20

30

40

n

T
(n

)

n2 + 3n

n2

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 19 / 31



Introduction Preliminaries Asymptotic analysis

Big-O, another example
T(n) = n2 + 3n is O(n2)

0 1 2 3 4 5

0

10

20

30

40

50

n

T
(n

)

n2 + 3n

2×n2

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 19 / 31



Introduction Preliminaries Asymptotic analysis

Big-O, yet another example
but n2 is not O(n) – proof by picture

100 101 102 103

100

101

102

103

104

105

106

n

T
(n

)

n2

n

10×n

100×n

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 20 / 31



Introduction Preliminaries Asymptotic analysis

Back to the function classes

Family Definition
Constant f(n) = c

Logarithmic f(n) = logb n

Linear f(n) = n

N log N f(n) = n logn
Quadratic f(n) = n2

Cubic f(n) = n3

Other polynomials f(n) = nk, for k > 3

Exponential f(n) = bn, for b > 1

Factorial f(n) = n!

• None of these functions can be expressed as a constant factor of another

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 21 / 31



Introduction Preliminaries Asymptotic analysis

Rules of thumb
Drop the lower order terms

• In the big-O notation, we drop the constants and lower order terms
– Any polynomial degree d is O(nd)
10n3 + 4n2 + n+ 100 is O(n3)

– Drop any lower order terms:
2n + 10n3 is O(2n)

• Use the simplest expression:
– 5n+ 100 is O(5n), but we prefer O(n)
– 4n2 + n+ 100 is O(n3),

• Transitivity: if f(n) = O(g(n)), and g(n) = O(h(n)), then f(n) = O(h(n))

• Additivity: if both f(n) and g(n) are O(h(n)) f(n) + g(n) is O(h(n))

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 22 / 31



Introduction Preliminaries Asymptotic analysis

Rules of thumb
examples

f(n) O(f(n))

7n− 2

n

3n3 − 2n2 + 5 n3

3 logn+ 5 logn
logn+ 2n 2n

10n5 + 2n 2n

log 2n n

2n + 4n 4n

100× 2n 2n

n2n n2n

logn! n logn

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 23 / 31



Introduction Preliminaries Asymptotic analysis

Rules of thumb
examples

f(n) O(f(n))

7n− 2 n

3n3 − 2n2 + 5

n3

3 logn+ 5 logn
logn+ 2n 2n

10n5 + 2n 2n

log 2n n

2n + 4n 4n

100× 2n 2n

n2n n2n

logn! n logn

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 23 / 31



Introduction Preliminaries Asymptotic analysis

Rules of thumb
examples

f(n) O(f(n))

7n− 2 n

3n3 − 2n2 + 5 n3

3 logn+ 5

logn
logn+ 2n 2n

10n5 + 2n 2n

log 2n n

2n + 4n 4n

100× 2n 2n

n2n n2n

logn! n logn

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 23 / 31



Introduction Preliminaries Asymptotic analysis

Rules of thumb
examples

f(n) O(f(n))

7n− 2 n

3n3 − 2n2 + 5 n3

3 logn+ 5 logn
logn+ 2n

2n

10n5 + 2n 2n

log 2n n

2n + 4n 4n

100× 2n 2n

n2n n2n

logn! n logn

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 23 / 31



Introduction Preliminaries Asymptotic analysis

Rules of thumb
examples

f(n) O(f(n))

7n− 2 n

3n3 − 2n2 + 5 n3

3 logn+ 5 logn
logn+ 2n 2n

10n5 + 2n

2n

log 2n n

2n + 4n 4n

100× 2n 2n

n2n n2n

logn! n logn

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 23 / 31



Introduction Preliminaries Asymptotic analysis

Rules of thumb
examples

f(n) O(f(n))

7n− 2 n

3n3 − 2n2 + 5 n3

3 logn+ 5 logn
logn+ 2n 2n

10n5 + 2n 2n

log 2n

n

2n + 4n 4n

100× 2n 2n

n2n n2n

logn! n logn

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 23 / 31



Introduction Preliminaries Asymptotic analysis

Rules of thumb
examples

f(n) O(f(n))

7n− 2 n

3n3 − 2n2 + 5 n3

3 logn+ 5 logn
logn+ 2n 2n

10n5 + 2n 2n

log 2n n

2n + 4n

4n

100× 2n 2n

n2n n2n

logn! n logn

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 23 / 31



Introduction Preliminaries Asymptotic analysis

Rules of thumb
examples

f(n) O(f(n))

7n− 2 n

3n3 − 2n2 + 5 n3

3 logn+ 5 logn
logn+ 2n 2n

10n5 + 2n 2n

log 2n n

2n + 4n 4n

100× 2n

2n

n2n n2n

logn! n logn

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 23 / 31



Introduction Preliminaries Asymptotic analysis

Rules of thumb
examples

f(n) O(f(n))

7n− 2 n

3n3 − 2n2 + 5 n3

3 logn+ 5 logn
logn+ 2n 2n

10n5 + 2n 2n

log 2n n

2n + 4n 4n

100× 2n 2n

n2n

n2n

logn! n logn

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 23 / 31



Introduction Preliminaries Asymptotic analysis

Rules of thumb
examples

f(n) O(f(n))

7n− 2 n

3n3 − 2n2 + 5 n3

3 logn+ 5 logn
logn+ 2n 2n

10n5 + 2n 2n

log 2n n

2n + 4n 4n

100× 2n 2n

n2n n2n

logn!

n logn

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 23 / 31



Introduction Preliminaries Asymptotic analysis

Rules of thumb
examples

f(n) O(f(n))

7n− 2 n

3n3 − 2n2 + 5 n3

3 logn+ 5 logn
logn+ 2n 2n

10n5 + 2n 2n

log 2n n

2n + 4n 4n

100× 2n 2n

n2n n2n

logn! n logn

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 23 / 31



Introduction Preliminaries Asymptotic analysis

Big-O: back to nearest points
def shortest_distance(points):

n = len(points) # 1 (constant?)
min = 0 # 1 (constant)
for i in range(n): # n times

for j in range(i): # i times
d = distance(points[i], points[j]) # 1 (constant)
if min > d: # 1 (constant)

min = d # 1 (constant)
return min # 1 (constant)

T(n) = 2+ (1+ 2+ 3+ . . .+ n− 1)× 3+ 1

= 2× (n− 1)(n− 2)

3
+ 3 = 2/3(n2 − 3n+ 2) + 3

= O(n2)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 24 / 31



Introduction Preliminaries Asymptotic analysis

Big-O: back to nearest points
def shortest_distance(points):

n = len(points) # 1 (constant?)
min = 0 # 1 (constant)
for i in range(n): # n times

for j in range(i): # i times
d = distance(points[i], points[j]) # 1 (constant)
if min > d: # 1 (constant)

min = d # 1 (constant)
return min # 1 (constant)

T(n) = 2+ (1+ 2+ 3+ . . .+ n− 1)× 3+ 1

= 2× (n− 1)(n− 2)

3
+ 3 = 2/3(n2 − 3n+ 2) + 3

= O(n2)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 24 / 31



Introduction Preliminaries Asymptotic analysis

Big-O examples
linear search

1 def linear_search(seq, val):
2 i, n = 0, len(seq)
3 while i < n:
4 if seq[i] == val:
5 return i
6 i += 1
7 return None

• What is the worst-case running time?

2. 2 assignments
3. 2n comparisons, n increment
7. 1 return statemnt

T(n) = 3n+ 3 = O(n)

• What is the average-case running time?
2. 2 assignments
3. 2(n/2) comparisons, n/2 increment, 1

return
T(n) = 3/2n+ 3 = O(n)

• What about best case? O(1)

Note: do not confuse the big-O with the worst case analysis.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 25 / 31



Introduction Preliminaries Asymptotic analysis

Big-O examples
linear search

1 def linear_search(seq, val):
2 i, n = 0, len(seq)
3 while i < n:
4 if seq[i] == val:
5 return i
6 i += 1
7 return None

• What is the worst-case running time?
2. 2 assignments
3. 2n comparisons, n increment
7. 1 return statemnt

T(n) = 3n+ 3 = O(n)

• What is the average-case running time?
2. 2 assignments
3. 2(n/2) comparisons, n/2 increment, 1

return
T(n) = 3/2n+ 3 = O(n)

• What about best case? O(1)

Note: do not confuse the big-O with the worst case analysis.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 25 / 31



Introduction Preliminaries Asymptotic analysis

Big-O examples
linear search

1 def linear_search(seq, val):
2 i, n = 0, len(seq)
3 while i < n:
4 if seq[i] == val:
5 return i
6 i += 1
7 return None

• What is the worst-case running time?
2. 2 assignments
3. 2n comparisons, n increment
7. 1 return statemnt

T(n) = 3n+ 3 = O(n)

• What is the average-case running time?

2. 2 assignments
3. 2(n/2) comparisons, n/2 increment, 1

return
T(n) = 3/2n+ 3 = O(n)

• What about best case? O(1)

Note: do not confuse the big-O with the worst case analysis.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 25 / 31



Introduction Preliminaries Asymptotic analysis

Big-O examples
linear search

1 def linear_search(seq, val):
2 i, n = 0, len(seq)
3 while i < n:
4 if seq[i] == val:
5 return i
6 i += 1
7 return None

• What is the worst-case running time?
2. 2 assignments
3. 2n comparisons, n increment
7. 1 return statemnt

T(n) = 3n+ 3 = O(n)

• What is the average-case running time?
2. 2 assignments
3. 2(n/2) comparisons, n/2 increment, 1

return

T(n) = 3/2n+ 3 = O(n)

• What about best case? O(1)

Note: do not confuse the big-O with the worst case analysis.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 25 / 31



Introduction Preliminaries Asymptotic analysis

Big-O examples
linear search

1 def linear_search(seq, val):
2 i, n = 0, len(seq)
3 while i < n:
4 if seq[i] == val:
5 return i
6 i += 1
7 return None

• What is the worst-case running time?
2. 2 assignments
3. 2n comparisons, n increment
7. 1 return statemnt

T(n) = 3n+ 3 = O(n)

• What is the average-case running time?
2. 2 assignments
3. 2(n/2) comparisons, n/2 increment, 1

return
T(n) = 3/2n+ 3 = O(n)

• What about best case?

O(1)

Note: do not confuse the big-O with the worst case analysis.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 25 / 31



Introduction Preliminaries Asymptotic analysis

Big-O examples
linear search

1 def linear_search(seq, val):
2 i, n = 0, len(seq)
3 while i < n:
4 if seq[i] == val:
5 return i
6 i += 1
7 return None

• What is the worst-case running time?
2. 2 assignments
3. 2n comparisons, n increment
7. 1 return statemnt

T(n) = 3n+ 3 = O(n)

• What is the average-case running time?
2. 2 assignments
3. 2(n/2) comparisons, n/2 increment, 1

return
T(n) = 3/2n+ 3 = O(n)

• What about best case? O(1)

Note: do not confuse the big-O with the worst case analysis.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 25 / 31



Introduction Preliminaries Asymptotic analysis

Big-O examples
linear search

1 def linear_search(seq, val):
2 i, n = 0, len(seq)
3 while i < n:
4 if seq[i] == val:
5 return i
6 i += 1
7 return None

• What is the worst-case running time?
2. 2 assignments
3. 2n comparisons, n increment
7. 1 return statemnt

T(n) = 3n+ 3 = O(n)

• What is the average-case running time?
2. 2 assignments
3. 2(n/2) comparisons, n/2 increment, 1

return
T(n) = 3/2n+ 3 = O(n)

• What about best case? O(1)

Note: do not confuse the big-O with the worst case analysis.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 25 / 31



Introduction Preliminaries Asymptotic analysis

Recursive example
Recursive binary search

1 def rbs(a, x, L=0, R=n):
2 if L > R:
3 return None
4 M = (L + R) // 2
5 if a[M] == x:
6 return M
7 if a[M] > x:
8 return rbs(a, x, L,

M - 1)↪→
9 else:

10 return rbs(a, x, M +
1, R)↪→

• Counting is not easy, but realize that
T(n) = c+ T(n/2)

• This is a recursive formula, it means
T(n/2) = c+ T(n/4),
T(n/4) = c+ T(n/8), . . .

• So, T(n) = 2c+ T(n/4) = 3c+ T(n/8)

• More generally, T(n) = ic+ T(n/2i)

• Recursion terminates when n/2i = 1, or n = 2i,
the good news: i = logn

• T(n) = c logn+ T(1) = O(logn)

You do not always need to prove: for most recurrence relations, a theorem
provides quick solution. (we are not going to cover it further, see Appendix)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 26 / 31



Introduction Preliminaries Asymptotic analysis

Recursive example
Recursive binary search

1 def rbs(a, x, L=0, R=n):
2 if L > R:
3 return None
4 M = (L + R) // 2
5 if a[M] == x:
6 return M
7 if a[M] > x:
8 return rbs(a, x, L,

M - 1)↪→
9 else:

10 return rbs(a, x, M +
1, R)↪→

• Counting is not easy, but realize that
T(n) = c+ T(n/2)

• This is a recursive formula, it means
T(n/2) = c+ T(n/4),
T(n/4) = c+ T(n/8), . . .

• So, T(n) = 2c+ T(n/4) = 3c+ T(n/8)

• More generally, T(n) = ic+ T(n/2i)

• Recursion terminates when n/2i = 1, or n = 2i,
the good news: i = logn

• T(n) = c logn+ T(1) = O(logn)

You do not always need to prove: for most recurrence relations, a theorem
provides quick solution. (we are not going to cover it further, see Appendix)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 26 / 31



Introduction Preliminaries Asymptotic analysis

Recursive example
Recursive binary search

1 def rbs(a, x, L=0, R=n):
2 if L > R:
3 return None
4 M = (L + R) // 2
5 if a[M] == x:
6 return M
7 if a[M] > x:
8 return rbs(a, x, L,

M - 1)↪→
9 else:

10 return rbs(a, x, M +
1, R)↪→

• Counting is not easy, but realize that
T(n) = c+ T(n/2)

• This is a recursive formula, it means
T(n/2) = c+ T(n/4),
T(n/4) = c+ T(n/8), . . .

• So, T(n) = 2c+ T(n/4) = 3c+ T(n/8)

• More generally, T(n) = ic+ T(n/2i)

• Recursion terminates when n/2i = 1, or n = 2i,
the good news: i = logn

• T(n) = c logn+ T(1) = O(logn)

You do not always need to prove: for most recurrence relations, a theorem
provides quick solution. (we are not going to cover it further, see Appendix)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 26 / 31



Introduction Preliminaries Asymptotic analysis

Recursive example
Recursive binary search

1 def rbs(a, x, L=0, R=n):
2 if L > R:
3 return None
4 M = (L + R) // 2
5 if a[M] == x:
6 return M
7 if a[M] > x:
8 return rbs(a, x, L,

M - 1)↪→
9 else:

10 return rbs(a, x, M +
1, R)↪→

• Counting is not easy, but realize that
T(n) = c+ T(n/2)

• This is a recursive formula, it means
T(n/2) = c+ T(n/4),
T(n/4) = c+ T(n/8), . . .

• So, T(n) = 2c+ T(n/4) = 3c+ T(n/8)

• More generally, T(n) = ic+ T(n/2i)

• Recursion terminates when n/2i = 1, or n = 2i,
the good news: i = logn

• T(n) = c logn+ T(1) = O(logn)

You do not always need to prove: for most recurrence relations, a theorem
provides quick solution. (we are not going to cover it further, see Appendix)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 26 / 31



Introduction Preliminaries Asymptotic analysis

Recursive example
Recursive binary search

1 def rbs(a, x, L=0, R=n):
2 if L > R:
3 return None
4 M = (L + R) // 2
5 if a[M] == x:
6 return M
7 if a[M] > x:
8 return rbs(a, x, L,

M - 1)↪→
9 else:

10 return rbs(a, x, M +
1, R)↪→

• Counting is not easy, but realize that
T(n) = c+ T(n/2)

• This is a recursive formula, it means
T(n/2) = c+ T(n/4),
T(n/4) = c+ T(n/8), . . .

• So, T(n) = 2c+ T(n/4) = 3c+ T(n/8)

• More generally, T(n) = ic+ T(n/2i)

• Recursion terminates when n/2i = 1, or n = 2i,
the good news: i = logn

• T(n) = c logn+ T(1) = O(logn)

You do not always need to prove: for most recurrence relations, a theorem
provides quick solution. (we are not going to cover it further, see Appendix)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 26 / 31



Introduction Preliminaries Asymptotic analysis

Recursive example
Recursive binary search

1 def rbs(a, x, L=0, R=n):
2 if L > R:
3 return None
4 M = (L + R) // 2
5 if a[M] == x:
6 return M
7 if a[M] > x:
8 return rbs(a, x, L,

M - 1)↪→
9 else:

10 return rbs(a, x, M +
1, R)↪→

• Counting is not easy, but realize that
T(n) = c+ T(n/2)

• This is a recursive formula, it means
T(n/2) = c+ T(n/4),
T(n/4) = c+ T(n/8), . . .

• So, T(n) = 2c+ T(n/4) = 3c+ T(n/8)

• More generally, T(n) = ic+ T(n/2i)

• Recursion terminates when n/2i = 1, or n = 2i,
the good news: i = logn

• T(n) = c logn+ T(1) = O(logn)

You do not always need to prove: for most recurrence relations, a theorem
provides quick solution. (we are not going to cover it further, see Appendix)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 26 / 31



Introduction Preliminaries Asymptotic analysis

Recursive example
Recursive binary search

1 def rbs(a, x, L=0, R=n):
2 if L > R:
3 return None
4 M = (L + R) // 2
5 if a[M] == x:
6 return M
7 if a[M] > x:
8 return rbs(a, x, L,

M - 1)↪→
9 else:

10 return rbs(a, x, M +
1, R)↪→

• Counting is not easy, but realize that
T(n) = c+ T(n/2)

• This is a recursive formula, it means
T(n/2) = c+ T(n/4),
T(n/4) = c+ T(n/8), . . .

• So, T(n) = 2c+ T(n/4) = 3c+ T(n/8)

• More generally, T(n) = ic+ T(n/2i)

• Recursion terminates when n/2i = 1, or n = 2i,
the good news: i = logn

• T(n) = c logn+ T(1) = O(logn)

You do not always need to prove: for most recurrence relations, a theorem
provides quick solution. (we are not going to cover it further, see Appendix)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 26 / 31



Introduction Preliminaries Asymptotic analysis

Recursive example
Recursive binary search

1 def rbs(a, x, L=0, R=n):
2 if L > R:
3 return None
4 M = (L + R) // 2
5 if a[M] == x:
6 return M
7 if a[M] > x:
8 return rbs(a, x, L,

M - 1)↪→
9 else:

10 return rbs(a, x, M +
1, R)↪→

• Counting is not easy, but realize that
T(n) = c+ T(n/2)

• This is a recursive formula, it means
T(n/2) = c+ T(n/4),
T(n/4) = c+ T(n/8), . . .

• So, T(n) = 2c+ T(n/4) = 3c+ T(n/8)

• More generally, T(n) = ic+ T(n/2i)

• Recursion terminates when n/2i = 1, or n = 2i,
the good news: i = logn

• T(n) = c logn+ T(1) = O(logn)

You do not always need to prove: for most recurrence relations, a theorem
provides quick solution. (we are not going to cover it further, see Appendix)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 26 / 31



Introduction Preliminaries Asymptotic analysis

Why asymptotic analysis is important?
‘maximum problem size’

• Assume we can solve a problem of sizem in a given time on current hardware
• We get a better computer, which runs 1024 times faster
• New problem size we can solve in the same time

Complexity new problem size
Linear (n) 1024m

Quadratic (n2) 32m

Exponential (2n) m+ 10

• This also demonstrates the gap between polynomial and exponential
algorithms:

– with a exponential algorithm fast hardware does not help
– problem size for exponential algorithms does not scale with faster computers

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 27 / 31



Introduction Preliminaries Asymptotic analysis

Worst case and asymptotic analysis
pros and cons

• We typically compare algorithms based on their worst-case performance

pro it is easier, and we get a (very) strong guarantee: we know that the algorithm
won’t perform worse than the bound

con a (very) strong guarantee: in some (many?) problems, worst case examples are
rare

– In practice you may prefer an algorithm that does better on average (we’ll see
examples from sorting)

• Our analyses are based on asymptotic behavior

pro for a ‘large enough’ input asymptotic analysis is correct
con constant or lower order factors are not always unimportant

– A constant factor of 100100 should probably not be ignored

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 28 / 31



Introduction Preliminaries Asymptotic analysis

Worst case and asymptotic analysis
pros and cons

• We typically compare algorithms based on their worst-case performance
pro it is easier, and we get a (very) strong guarantee: we know that the algorithm

won’t perform worse than the bound

con a (very) strong guarantee: in some (many?) problems, worst case examples are
rare

– In practice you may prefer an algorithm that does better on average (we’ll see
examples from sorting)

• Our analyses are based on asymptotic behavior

pro for a ‘large enough’ input asymptotic analysis is correct
con constant or lower order factors are not always unimportant

– A constant factor of 100100 should probably not be ignored

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 28 / 31



Introduction Preliminaries Asymptotic analysis

Worst case and asymptotic analysis
pros and cons

• We typically compare algorithms based on their worst-case performance
pro it is easier, and we get a (very) strong guarantee: we know that the algorithm

won’t perform worse than the bound
con a (very) strong guarantee: in some (many?) problems, worst case examples are

rare

– In practice you may prefer an algorithm that does better on average (we’ll see
examples from sorting)

• Our analyses are based on asymptotic behavior

pro for a ‘large enough’ input asymptotic analysis is correct
con constant or lower order factors are not always unimportant

– A constant factor of 100100 should probably not be ignored

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 28 / 31



Introduction Preliminaries Asymptotic analysis

Worst case and asymptotic analysis
pros and cons

• We typically compare algorithms based on their worst-case performance
pro it is easier, and we get a (very) strong guarantee: we know that the algorithm

won’t perform worse than the bound
con a (very) strong guarantee: in some (many?) problems, worst case examples are

rare
– In practice you may prefer an algorithm that does better on average (we’ll see
examples from sorting)

• Our analyses are based on asymptotic behavior

pro for a ‘large enough’ input asymptotic analysis is correct
con constant or lower order factors are not always unimportant

– A constant factor of 100100 should probably not be ignored

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 28 / 31



Introduction Preliminaries Asymptotic analysis

Worst case and asymptotic analysis
pros and cons

• We typically compare algorithms based on their worst-case performance
pro it is easier, and we get a (very) strong guarantee: we know that the algorithm

won’t perform worse than the bound
con a (very) strong guarantee: in some (many?) problems, worst case examples are

rare
– In practice you may prefer an algorithm that does better on average (we’ll see
examples from sorting)

• Our analyses are based on asymptotic behavior

pro for a ‘large enough’ input asymptotic analysis is correct
con constant or lower order factors are not always unimportant

– A constant factor of 100100 should probably not be ignored

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 28 / 31



Introduction Preliminaries Asymptotic analysis

Worst case and asymptotic analysis
pros and cons

• We typically compare algorithms based on their worst-case performance
pro it is easier, and we get a (very) strong guarantee: we know that the algorithm

won’t perform worse than the bound
con a (very) strong guarantee: in some (many?) problems, worst case examples are

rare
– In practice you may prefer an algorithm that does better on average (we’ll see
examples from sorting)

• Our analyses are based on asymptotic behavior
pro for a ‘large enough’ input asymptotic analysis is correct

con constant or lower order factors are not always unimportant
– A constant factor of 100100 should probably not be ignored

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 28 / 31



Introduction Preliminaries Asymptotic analysis

Worst case and asymptotic analysis
pros and cons

• We typically compare algorithms based on their worst-case performance
pro it is easier, and we get a (very) strong guarantee: we know that the algorithm

won’t perform worse than the bound
con a (very) strong guarantee: in some (many?) problems, worst case examples are

rare
– In practice you may prefer an algorithm that does better on average (we’ll see
examples from sorting)

• Our analyses are based on asymptotic behavior
pro for a ‘large enough’ input asymptotic analysis is correct
con constant or lower order factors are not always unimportant

– A constant factor of 100100 should probably not be ignored

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 28 / 31



Introduction Preliminaries Asymptotic analysis

Worst case and asymptotic analysis
pros and cons

• We typically compare algorithms based on their worst-case performance
pro it is easier, and we get a (very) strong guarantee: we know that the algorithm

won’t perform worse than the bound
con a (very) strong guarantee: in some (many?) problems, worst case examples are

rare
– In practice you may prefer an algorithm that does better on average (we’ll see
examples from sorting)

• Our analyses are based on asymptotic behavior
pro for a ‘large enough’ input asymptotic analysis is correct
con constant or lower order factors are not always unimportant

– A constant factor of 100100 should probably not be ignored

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 28 / 31



Introduction Preliminaries Asymptotic analysis

Big-O relatives

• Big-O (upper bound): f(n) is O(g(n))
if f(n) is asymptotically less than or equal to g(n)

f(n) ⩽ cg(n) for n > n0

• Big-Omega (lower bound): f(n) is Ω(g(n))
if f(n) is asymptotically greater than or equal to g(n)

f(n) ⩾ cg(n) for n > n0

• Big-Theta (upper/lower bound): f(n) is Θ(g(n))
if f(n) is asymptotically equal to g(n)

f(n) is O(g(n)) and f(n) is Ω(g(n))

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 29 / 31



Introduction Preliminaries Asymptotic analysis

Big-O relatives

• Big-O (upper bound): f(n) is O(g(n))
if f(n) is asymptotically less than or equal to g(n)

f(n) ⩽ cg(n) for n > n0

• Big-Omega (lower bound): f(n) is Ω(g(n))
if f(n) is asymptotically greater than or equal to g(n)

f(n) ⩾ cg(n) for n > n0

• Big-Theta (upper/lower bound): f(n) is Θ(g(n))
if f(n) is asymptotically equal to g(n)

f(n) is O(g(n)) and f(n) is Ω(g(n))

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 29 / 31



Introduction Preliminaries Asymptotic analysis

Big-O relatives

• Big-O (upper bound): f(n) is O(g(n))
if f(n) is asymptotically less than or equal to g(n)

f(n) ⩽ cg(n) for n > n0

• Big-Omega (lower bound): f(n) is Ω(g(n))
if f(n) is asymptotically greater than or equal to g(n)

f(n) ⩾ cg(n) for n > n0

• Big-Theta (upper/lower bound): f(n) is Θ(g(n))
if f(n) is asymptotically equal to g(n)

f(n) is O(g(n)) and f(n) is Ω(g(n))

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 29 / 31



Introduction Preliminaries Asymptotic analysis

Big-O, Big-Ω, Big-Θ: an example
T(n) = n2 + 3n is O(n2)

0 1 2 3 4 5

0

20

40

n

T
(n

)

2×n2

n2 + 3n

O for c = 2 and n0 = 3

T(n) ⩽ cg(n) for n > n0

Ω for c = 0 and n0 = 3

T(n) ⩾ cg(n) for n > n0

Θ for c = 0, n0 = 3, c ′ = 0 and n ′
1 = 3

T(n) ⩽ cg(n) for n > n0 and
T(n) ⩾ c ′g(n) for n > n ′

0

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 30 / 31



Introduction Preliminaries Asymptotic analysis

Big-O, Big-Ω, Big-Θ: an example
T(n) = n2 + 3n is Ω(n2)

0 1 2 3 4 5

0

20

40

n

T
(n

)

n2 + 3n

1×n2

O for c = 2 and n0 = 3

T(n) ⩽ cg(n) for n > n0

Ω for c = 0 and n0 = 3

T(n) ⩾ cg(n) for n > n0

Θ for c = 0, n0 = 3, c ′ = 0 and n ′
1 = 3

T(n) ⩽ cg(n) for n > n0 and
T(n) ⩾ c ′g(n) for n > n ′

0

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 30 / 31



Introduction Preliminaries Asymptotic analysis

Big-O, Big-Ω, Big-Θ: an example
T(n) = n2 + 3n is Θ(n2)

0 1 2 3 4 5

0

20

40

n

T
(n

)

2×n2

n2 + 3n

1×n2

O for c = 2 and n0 = 3

T(n) ⩽ cg(n) for n > n0

Ω for c = 0 and n0 = 3

T(n) ⩾ cg(n) for n > n0

Θ for c = 0, n0 = 3, c ′ = 0 and n ′
1 = 3

T(n) ⩽ cg(n) for n > n0 and
T(n) ⩾ c ′g(n) for n > n ′

0

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 30 / 31



Introduction Preliminaries Asymptotic analysis

Summary

• Algorithmic analysis mainly focuses on worst-case asymptotic running times
• Sublinear (e.g., logarithmic), Linear and N log N algorithms are good
• Polynomial algorithms may be acceptable in some cases
• Exponential algorithms are bad
• We will return to concepts from this lecture while studying various
algorithms

• Reading for this lectures: Goodrich, Tamassia, and Goldwasser (2013,
chapter 3)

Next:
• Sorting algorithms
• Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12) – up to 12.7

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 31 / 31



Introduction Preliminaries Asymptotic analysis

Summary

• Algorithmic analysis mainly focuses on worst-case asymptotic running times
• Sublinear (e.g., logarithmic), Linear and N log N algorithms are good
• Polynomial algorithms may be acceptable in some cases
• Exponential algorithms are bad
• We will return to concepts from this lecture while studying various
algorithms

• Reading for this lectures: Goodrich, Tamassia, and Goldwasser (2013,
chapter 3)

Next:
• Sorting algorithms
• Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12) – up to 12.7

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 31 / 31



Acknowledgments, credits, references

• Some of the slides are based on the previous year’s course by Corina Dima.

Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013).
Data Structures and Algorithms in Python. John Wiley & Sons, Incorporated. ISBN:
9781118476734.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.1



A(nother) view of computational complexity
P, NP, NP-complete and all that

• A major division of complexity classes according to Big-O notation is
between

P polynomial time algorithms
NP non-deterministic polynomial time algorithms

• A big question in computing is whether P = NP
• All problems in NP can be reduced in polynomial time to a problem in a
subclass of NP (NP-complete)

– Solving an NP complete problem in P would mean proving

P = NP

Video from https://www.youtube.com/watch?v=YX40hbAHx3s

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.2

https://www.youtube.com/watch?v=YX40hbAHx3s


Exercise
Sort the functions based on asymptotic order of growth

logn1000

n log(n)

5n

logn

logn1/ logn

logn

log 2n/n

logn!

log 2n

log 5n(
n

n/2

)
log logn!

√
n

n2

2n(
n

2

)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.3



Recurrence relations
the master theorem

• Given a recurrence relation:

T(n) = aT
(n
b

)
+O(nd)

a number of sub-problems
b reduction factor or the input

nd amount of work to create and combine sub-problems

T(n) =


O(nd log(n)) if a = bd

O(nd) if a < bd

O(nlogb a if a = bd

• The theorem is more general than most cases where a = b

• But the theorem is not general for all recurrences: it requires equal splits
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.4



Big-O example with recurrence
an informal sketch of complexity of segmentation

1 def segment_r(seq):
2 if len(seq) == 1:
3 yield [seq]
4 else:
5 for seg in segment_r(seq[1:]):
6 yield [seq[0]] + seg
7 yield [seq[0] + seg[0]] +

seg[1:]↪→

• Intuition:
– if n = 1, time is constant: c
– for n = 2 we make two recursive
calls 2c

– for n = 3 we make two recursive
calls with size 2 (ignoring size 1
calls) 2× 2c

– for n = 4 we make more calls, at
least including 2× 2× 2c

– for n = 5 we make even more
calls, at least including
2× 2× 2× 2c

– for n we make at least 2n−1c calls

Note that the master theorem is not useful for this algorithm.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.5



Big-O example with recurrence
an informal sketch of complexity of segmentation

1 def segment_r(seq):
2 if len(seq) == 1:
3 yield [seq]
4 else:
5 for seg in segment_r(seq[1:]):
6 yield [seq[0]] + seg
7 yield [seq[0] + seg[0]] +

seg[1:]↪→

• Intuition:
– if n = 1, time is constant: c
– for n = 2 we make two recursive
calls 2c

– for n = 3 we make two recursive
calls with size 2 (ignoring size 1
calls) 2× 2c

– for n = 4 we make more calls, at
least including 2× 2× 2c

– for n = 5 we make even more
calls, at least including
2× 2× 2× 2c

– for n we make at least 2n−1c calls
Note that the master theorem is not useful for this algorithm.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.5



blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.6



blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.7



blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2020/21 A.8


	Analysis of Algorithms
	Introduction
	What are we analyzing?
	What are we analyzing?
	What are we analyzing?
	How to determine running time of an algorithm?
	How to determine running time of an algorithm?
	How to determine running time of an algorithm?

	Preliminaries
	Some functions to know about
	Some functions to know about
	Some functions to know about
	A few facts about logarithms
	Polynomials
	Combinations and permutations
	Proof by induction
	Proof by induction
	Proof by induction
	Proof by induction
	Proof by induction

	Asymptotic analysis
	Formal analysis of algorithm running time
	How much hardware independence?
	How much hardware independence?
	RAM model: an example
	Formal analysis of running time
	Focus on the worst case
	Counting primitive operations
	Big-O notation
	Big-O example
	Big-O example
	Big-O, another example
	Big-O, another example
	Big-O, yet another example
	Back to the function classes
	Rules of thumb
	Rules of thumb
	Rules of thumb
	Rules of thumb
	Rules of thumb
	Rules of thumb
	Rules of thumb
	Rules of thumb
	Rules of thumb
	Rules of thumb
	Rules of thumb
	Rules of thumb
	Big-O: back to nearest points
	Big-O: back to nearest points
	Big-O examples
	Big-O examples
	Big-O examples
	Big-O examples
	Big-O examples
	Big-O examples
	Big-O examples
	Recursive example
	Recursive example
	Recursive example
	Recursive example
	Recursive example
	Recursive example
	Recursive example
	Recursive example
	Why asymptotic analysis is important?
	Worst case and asymptotic analysis
	Worst case and asymptotic analysis
	Worst case and asymptotic analysis
	Worst case and asymptotic analysis
	Worst case and asymptotic analysis
	Worst case and asymptotic analysis
	Worst case and asymptotic analysis
	Worst case and asymptotic analysis
	Big-O relatives
	Big-O relatives
	Big-O relatives
	Big-O, Big-, Big-: an example
	Big-O, Big-, Big-: an example
	Big-O, Big-, Big-: an example
	Summary
	Summary


	Appendix
	Acknowledgments, credits, references
	A(nother) view of computational complexity
	Exercise
	Recurrence relations
	Big-O example with recurrence
	Big-O example with recurrence



