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What are we analyzing?

+ Sofar, we frequently asked: ‘can we
« Now, we turn to the questions of

- what s better?

= how do we know an algorithm is

 do better?”

beter than the other?

. prop
~ correctness
- robustness
~ simplicity

~ T this lecture, effciency will be our focus
« in particlr time eficency complexity

How to determine running time of an algorithm?

write the code, experiment

« A few issues with this approach:
~ Implementing something that does ot

Some functions to know about

Definition

It
(n) = fork >3
fln) = b™ forb > 1

+ A possible approsch ot e

! - — og

= et vrying ot Quadratic

~ Analyze the results ~ If your version takes 10 seconds less than a Cubic
erkn eporied 10y oo ey Other paynomials
e mpovemens Exponental

 Aformal approach offers some helphere Factonal
+ Weawilus

Some functions to know about

the picture - why e care about their diference

Some functions to know about
the bigger plcture

A few facts about logarithms Polynomials
+ Logarithm is the inverse of exponentiation:
x=logyn 4= b¥=n + A degree-0 polynomial is a constant function (f(n) = )
+ We will mostly use base-2 ogarithms. For us, no-base means base-2 + A degree-1islinear (f(n) =1 + )
+ Additional properties: « A degree-2 is quadratic (f(n) =n? +n+c)
logxy =log +logy + We generally drop the lower order terms (soon we'll xplain why)
log v logx —logy « Sometimes it will be useful to remember that
logx® = L_nnen
142434 an =000
logy x
oL (much) slower than

Combinations and permutations

enl=nx o) xex2x 1
« Permutations

Proof by induction

« Induction is an important proof technique

e o + It often used for both proving the correctness and running times of
Pl =nx (1) x (k=) = algorithms
. i  Itworks if we can enumerate the steps of an algorithm (loops, recursion)
glCombinatiznsbichossel ~ Show that base case holds
- m Pin k) n! - +1
e~ (3) =5k -t
Proof by induction Formal analysis of algorithm running time
Exampls how that 1 +2+3 ... = + 112
« Base case, for n=1
22
+ Assuming  We are focusing on characterizing running time of algorithms
+ The running time is characteized s a function of input size
+ We are aiming for an analysis method
 independent of ardware / software environment
we need toshow that oo no require mplementatin befre analyss
2 onaidersal nputs posible
nn+1) A+ +2An N (ntDint2)
Uy = MR D) [t Ut D)




How much hardware independence?

quite, bt ot completely we assme a RAM model of computing

+ Characterized by
sequential memory,like a ape)
perform some

" comparison) in constant e
« The data and the instructions are stored in the RAM

(RAM) (e:g., E

(addition,

« The processor h
instructions
« This s largely true for any computing system we use in practice

RAM model: an example

« Processing unit does basic
operations in constant time

+ Any memory cell with the address
can be accessed in equal (constant)
time

« The instructions as well as the data
s kept in the memory

« There may be other, specialized
registers

processing unit

employ a ‘cach

* Modom processing s oftn i

Formal analysis of running time

« Simply count the number of primitive operations
« Primitive operations include:

- Asignment

- Anthmetic operations

- Comparing primie dta ypes (e, mumbers)

+ Not primitive operations:
- loops, recursion
= comparing sequences

Focus on the worst case

« Algorithims are generally faster on certain input than others
« In most cases, we are interested in the worst case analy
- Guaranteeing worst ase i important
o identity
+ Average case analysis i aloo useful, but
~ It defing bt v sl nps
- often more challen

Counting primitive operations
example: ncarest points the mave lgorthn

go(@)

)
- sismancelpotata (i), posacaly))

Tl =2+ (14243 +
m-Nn-2

Hn-T)x341

—3x

Big-O notation

* B Onotation i useforindictng 0 uppes bound on sunnin e of an
algorithm as a function of running 6
« If running time of an algorithm P running time grows
proportional o f(n) as the input size n grows
* More formaly, tven functons (n)and gl wesaythat () 1 (o)
there s a constant ¢ > 0 and integer o > 1 such that
1(n) < ¢ % gln) forn > no

+ Sometimes the notation () = O(g(n) is also used, but beware: this equal

sign is not symmetri

Big-O example

Big-O, another example
Tinj=nt o

Ti) =~ 2n 4513 O(n) niso
10,000 o[t
8,000 -
6000 -
z ')
=00 =
2000 U
0 0
0 20 4 @ 8 100 o 1 2 3 4 5
s
2 ’» ) ’» 7 *
Bx,, -0, yet another example Back to the function classes
ot () - prof by pcure
Fami Definition
Constant e
Logarithmic ) = logy n
Linear fn)=n
& NlogN i(n) = nlogn
= Quadratic fln) = n?
Cubie
Other polynomials
Exponential
Factorial
« None of these functions can be expressed as a constant factor of another
Rules of thumb Rules of thumb
Dropthe lowe ode terms .
« In the big-O notation, we drop the constants and lower order terms fin)_O(ftr))
- Ang plymomial dgre d1s O(n) -2 n
£ 10015 O(n) -2 nd
- Drop un% ower onder s Slogn+5 logn
4100 002 logn +2"
+ Use the simplest expression: Tons 420 2
~ 5n4 100 O(5n), but we prefer O(r) log2" n
~dn? £+ 10018 Oln), mpan g
« Transitivity: f f(n) = Olg(n)), and g(n) = O(h(n)}, then f(n) = O(h(n)) 100x20 20
« Additivity: if both f(n) and g(n) are O(h(n)) f(n) + g(n) is O(R(n)) B,
logn!_nlogn




Big-O: back to nearest points

Big-O examples

inear scarch

it shortess cistancguint)
o entponay
+ Whatis the worst-case running time?
Tor 1 4n range(a) > Zasigmens
) n ranga(s) '
Zdietance(potntalil, posnta(s]) 1 GoF Tinear_search(ssq, vab: 7. 1 retum statemnt
onoa L0 TenGeed) 0
LT TR T(n) =3n+3 = O(n)
: Rt + What i the verage-case running time?
: e Y 2 2assignments
6 141 3. 2(n/2) comparisons, /2 ncrement,
T)=24+(14243+...4n-1)x3+1 7 return None return
D=2 s T(n)=3/2n+3=0(n)
2 2R S8R0 « What about best case?  O(1)
=om) Note: do not confuse the big-O with the worst case analysis.
Recursive example Why asymptotic analysis is important?
Recursve binay sarch i problem sz
: 5 . G 5
| Bt G, 7, 0, W e
2 LR Tin) =e+T(n/2) « We get a better computer, which runs 1024 times faster
’ » This s a recursive formula, it means « New problem size we can solve in the same time
2 2 T(n/2) = e+ Tin/a),
g Tin/4) = ¢+ Tin/8) Complexi ‘new problem size
B M) > 2+ T(n/4) =3¢+ T(n/8) 1024m
H e mu. 5L, + More generally, T(n) = ic + T(n/2") Quadratic (n?) 3m
. « Koo termipaes when 2 =1, =2, Exponental @) mo+10
s et e 5 0 the good new . aland tal
TR
T = clogm 471 - Oflogn) algorithms:

prove: theorem
, see Appendix)

~ with a exponential algorithm fast hardware does not help

Worst case and asymptotic analysis

p based on their worst.
o i casie and we geta (vry) trongguaranie: e Know that the algoriten
won't perform worse than the boung

problems, worst

~Inp
examples from sorting)
+ Our analyses are based on asymptotic behavior
pro fora large enough' input asymptotic analysi is correct
on constant orlower order factors re not always unimportant
- A constant factor of 100199 should probably not be ignored

Big-O relatives

« Big:O (upper bound): f(n) is O(g(n))
i f(n) is asymptotically ess fan or eqal to g(r)

fn) < cgln) forn > no

+ Big:Omega (lower bound): ) is Qg(n))
i) s pmprotcaty e o g o)

f(n) > cg(n) for n > no
Theta Luppzr/luw&rbolmd} {185t
) is asymptotically equal to

fn)is ()\g‘n\\ and f(n) is Q(g(n))

Big-O, Big-0, Big-: an example

T —nd 4 3n s

O forc=2andng =3
Tin) < egin) forn > no
0 fore=0andno =3
Tin) > egin) forn > no

© forc

o =3,¢!

Tin) < egln) forn > no
Tin) >

and
cgln) forn > nj

andnf =3

Summary

), Lincar and N log N
« Polynonsial algorithms may be acceptable in some cases
« Exponential algorithms are bad
= We will return to concepts from this lecture while studying various
algorithms
* Readingfor i lctne: Goodech, Tamast, s Gl aser (2015,
chapter 3)
Next:
« Sorting algorithms
+ Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12) - up to 127

« Sublincar

Acknowledgments, credits, references

« Some of the slides are based on the previous year's course by Corina Dima.

B oo il . Rt Tamasi and Mica . Gldvsr (1)
and Algoritns in Pythan.John

Wiley & Sons, Incorporated. sm:

A(nother) view of computational complexity
1NN complte and al that

+ A majo divison of complesityclasses acording o Big-O tation s
beween P Bone
" polynamia timealgortns
NI Pondeterminisic poymoma e algorthms
+ Abig question i computing s whether P = NP
* Allproblems in NP

iced in polynomial time to a problem in a
subelass of NP (NP-complete)

et ~ Solving an NP complete problem in P would mean proving
PoNP
Video from https: //sww. youtube. con/vatch7v=YX40DAHI3S
Exercise Recurrence relations

Sortthefunctions based on ssymptatic order of growth

logn!0%® logs™
nlog(n) ( S )
2,
logn Toglognt
logn!/=n N
logn w
log2*/n »
Togn! (,‘)
log 2" 2

themaste theorem
« Given a recurrence relation:

Tin) = aT (3 ) +0(n)
@ number of sub-problems

b reduction factor or the input
¢ amount of work to create and combine sub-problems

O(nélogn)) ifa=bd
Tin) = { O(nd) ifa<bi
O ifa=bl

« The theorem is more general than most cases where

b
+ But the theorem is not general for all recurrences: it requires equal splits



https://www.youtube.com/watch?v=YX40hbAHx3s

O example with recurrence

« tntuiton
£ 1, tme s constant:
o 2 e e e recurive
e alose
en(seq) =1 for n = 3 we make two recursive
yield [aeq) callswith size 2 (ignoring size 1
‘. — alls) 2x 2
’ el ielene B o - 4w make more calls,a
14 feald : leaotincluding 2 2. ¢
o ot = 5 we ke even more

cals, ateast including.
Ix2x
= forn we make atleast 2% Tc calls

Note that the master thearem is not useful for this algorithm.
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