Analysis of Algorithms
Data Structures and Algorithms for Computational Linguistics 1
(1sCL8A7)

Gagn Caltekin
ceoltekindsts. uni-tuebingen. de

bty ot o
S G Speachwismnsctt

Winter Semester 2020/21

What are we analyzing?

+ Sofar, we frequently asked: ‘can we
« Now, we turn to the questions of

- what s better?

= how do we know an algorithm is

 do better?”

beter than the other?

. prop
~ correctness
- robustness
~ simplicity

~ T this lecture, effciency will be our focus
« in particlr time eficency complexity

How to determine running time of an algorithm?

write the code, experiment

« A few issues with this approach:
~ Implementing something that does ot

Some functions to know about

Definition

It
(n) = fork >3
fln) = b™ forb > 1

+ A possible approsch ot e

! - — og

= et vrying ot Quadratic

~ Analyze the results ~ If your version takes 10 seconds less than a Cubic
erkn eporied 10y oo ey Other paynomials
e mpovemens Exponental

 Aformal approach offers some helphere Factonal
+ Weawilus

Some functions to know about

the picture - why e care about their diference

Some functions to know about
the bigger plcture

A few facts about logarithms Polynomials
+ Logarithm is the inverse of exponentiation:
x=logyn 4= b¥=n + A degree-0 polynomial is a constant function (f(n) =)
+ We will mostly use base-2 ogarithms. For us, no-base means base-2 + A degree-1islinear (f(n) =1 +)
+ Additional properties: « A degree-2 is quadratic (f(n) =n? +n+c)
logxy =log +logy + We generally drop the lower order terms (soon we'll xplain why)
log v logx —logy « Sometimes it will be useful to remember that
logx® = L_nnen
142434 an =000
logy x
oL (much) slower than

Combinations and permutations

enl=nx o) xex2x 1
« Permutations

Proof by induction

« Induction is an important proof technique

e o + It often used for both proving the correctness and running times of
Pl =nx (1) x (k=) = algorithms
. i Itworks if we can enumerate the steps of an algorithm (loops, recursion)
glCombinatiznsbichossel ~ Show that base case holds
- m Pin k) n! - +1
e~ (3) =5k -t
Proof by induction Formal analysis of algorithm running time
Exampls how that 1 +2+3 ... = + 112
« Base case, for n=1
22
+ Assuming We are focusing on characterizing running time of algorithms
+ The running time is characteized s a function of input size
+ We are aiming for an analysis method
 independent of ardware / software environment
we need toshow that oo no require mplementatin befre analyss
2 onaidersal nputs posible
nn+1) A+ +2An N (ntDint2)
Uy = MR D) [t Ut D)

How much hardware independence?

quite, bt ot completely we assme a RAM model of computing

+ Characterized by
sequential memory,like a ape)
perform some

" comparison) in constant e
« The data and the instructions are stored in the RAM

(RAM) (e:g., E

(addition,

« The processor h
instructions
« This s largely true for any computing system we use in practice

RAM model: an example

« Processing unit does basic
operations in constant time

+ Any memory cell with the address
can be accessed in equal (constant)
time

« The instructions as well as the data
s kept in the memory

« There may be other, specialized
registers

processing unit

employ a ‘cach

* Modom processing s oftn i

Formal analysis of running time

« Simply count the number of primitive operations
« Primitive operations include:

- Asignment

- Anthmetic operations

- Comparing primie dta ypes (e, mumbers)

+ Not primitive operations:
- loops, recursion
= comparing sequences

Focus on the worst case

« Algorithims are generally faster on certain input than others
« In most cases, we are interested in the worst case analy
- Guaranteeing worst ase i important
o identity
+ Average case analysis i aloo useful, but
~ It defing bt v sl nps
- often more challen

Counting primitive operations
example: ncarest points the mave lgorthn

go(@)

)
- sismancelpotata (i), posacaly))

Tl =2+ (14243 +
m-Nn-2

Hn-T)x341

—3x

Big-O notation

* B Onotation i useforindictng 0 uppes bound on sunnin e of an
algorithm as a function of running 6
« If running time of an algorithm P running time grows
proportional o f(n) as the input size n grows
* More formaly, tven functons (n)and gl wesaythat () 1 (o)
there s a constant ¢ > 0 and integer o > 1 such that
1(n) < ¢ % gln) forn > no

+ Sometimes the notation () = O(g(n) is also used, but beware: this equal

sign is not symmetri

Big-O example

Big-O, another example
Tinj=nt o

Ti) =~ 2n 4513 O(n) niso
10,000 o[t
8,000 -
6000 -
z ')
=00 =
2000 U
0 0
0 20 4 @ 8 100 o 1 2 3 4 5
s
2 ’») ’» 7 *
Bx,, -0, yet another example Back to the function classes
ot () - prof by pcure
Fami Definition
Constant e
Logarithmic) = logy n
Linear fn)=n
& NlogN i(n) = nlogn
= Quadratic fln) = n?
Cubie
Other polynomials
Exponential
Factorial
« None of these functions can be expressed as a constant factor of another
Rules of thumb Rules of thumb
Dropthe lowe ode terms .
« In the big-O notation, we drop the constants and lower order terms fin)_O(ftr))
- Ang plymomial dgre d1s O(n) -2 n
£ 10015 O(n) -2 nd
- Drop un% ower onder s Slogn+5 logn
4100 002 logn +2"
+ Use the simplest expression: Tons 420 2
~ 5n4 100 O(5n), but we prefer O(r) log2" n
~dn? £+ 10018 Oln), mpan g
« Transitivity: f f(n) = Olg(n)), and g(n) = O(h(n)}, then f(n) = O(h(n)) 100x20 20
« Additivity: if both f(n) and g(n) are O(h(n)) f(n) + g(n) is O(R(n)) B,
logn!_nlogn

Big-O: back to nearest points

Big-O examples

inear scarch

it shortess cistancguint)
o entponay
+ Whatis the worst-case running time?
Tor 1 4n range(a) > Zasigmens
) n ranga(s) '
Zdietance(potntalil, posnta(s]) 1 GoF Tinear_search(ssq, vab: 7. 1 retum statemnt
onoa L0 TenGeed) 0
LT TR T(n) =3n+3 = O(n)
: Rt + What i the verage-case running time?
: e Y 2 2assignments
6 141 3. 2(n/2) comparisons, /2 ncrement,
T)=24+(14243+...4n-1)x3+1 7 return None return
D=2 s T(n)=3/2n+3=0(n)
2 2R S8R0 « What about best case? O(1)
=om) Note: do not confuse the big-O with the worst case analysis.
Recursive example Why asymptotic analysis is important?
Recursve binay sarch i problem sz
: 5 . G 5
| Bt G, 7, 0, W e
2 LR Tin) =e+T(n/2) « We get a better computer, which runs 1024 times faster
’ » This s a recursive formula, it means « New problem size we can solve in the same time
2 2 T(n/2) = e+ Tin/a),
g Tin/4) = ¢+ Tin/8) Complexi ‘new problem size
B M) > 2+ T(n/4) =3¢+ T(n/8) 1024m
H e mu. 5L, + More generally, T(n) = ic + T(n/2") Quadratic (n?) 3m
. « Koo termipaes when 2 =1, =2, Exponental @) mo+10
s et e 5 0 the good new . aland tal
TR
T = clogm 471 - Oflogn) algorithms:

prove: theorem
, see Appendix)

~ with a exponential algorithm fast hardware does not help

Worst case and asymptotic analysis

p based on their worst.
o i casie and we geta (vry) trongguaranie: e Know that the algoriten
won't perform worse than the boung

problems, worst

~Inp
examples from sorting)
+ Our analyses are based on asymptotic behavior
pro fora large enough' input asymptotic analysi is correct
on constant orlower order factors re not always unimportant
- A constant factor of 100199 should probably not be ignored

Big-O relatives

« Big:O (upper bound): f(n) is O(g(n))
i f(n) is asymptotically ess fan or eqal to g(r)

fn) < cgln) forn > no

+ Big:Omega (lower bound):) is Qg(n))
i) s pmprotcaty e o g o)

f(n) > cg(n) for n > no
Theta Luppzr/luw&rbolmd} {185t
) is asymptotically equal to

fn)is ()\g‘n\\ and f(n) is Q(g(n))

Big-O, Big-0, Big-: an example

T —nd 4 3n s

O forc=2andng =3
Tin) < egin) forn > no
0 fore=0andno =3
Tin) > egin) forn > no

© forc

o =3,¢!

Tin) < egln) forn > no
Tin) >

and
cgln) forn > nj

andnf =3

Summary

), Lincar and N log N
« Polynonsial algorithms may be acceptable in some cases
« Exponential algorithms are bad
= We will return to concepts from this lecture while studying various
algorithms
* Readingfor i lctne: Goodech, Tamast, s Gl aser (2015,
chapter 3)
Next:
« Sorting algorithms
+ Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12) - up to 127

« Sublincar

Acknowledgments, credits, references

« Some of the slides are based on the previous year's course by Corina Dima.

B oo il . Rt Tamasi and Mica . Gldvsr (1)
and Algoritns in Pythan.John

Wiley & Sons, Incorporated. sm:

A(nother) view of computational complexity
1NN complte and al that

+ A majo divison of complesityclasses acording o Big-O tation s
beween P Bone
" polynamia timealgortns
NI Pondeterminisic poymoma e algorthms
+ Abig question i computing s whether P = NP
* Allproblems in NP

iced in polynomial time to a problem in a
subelass of NP (NP-complete)

et ~ Solving an NP complete problem in P would mean proving
PoNP
Video from https: //sww. youtube. con/vatch7v=YX40DAHI3S
Exercise Recurrence relations

Sortthefunctions based on ssymptatic order of growth

logn!0%® logs™
nlog(n) (S)
2,
logn Toglognt
logn!/=n N
logn w
log2*/n »
Togn! (,‘)
log 2" 2

themaste theorem
« Given a recurrence relation:

Tin) = aT (3) +0(n)
@ number of sub-problems

b reduction factor or the input
¢ amount of work to create and combine sub-problems

O(nélogn)) ifa=bd
Tin) = { O(nd) ifa<bi
O ifa=bl

« The theorem is more general than most cases where

b
+ But the theorem is not general for all recurrences: it requires equal splits

https://www.youtube.com/watch?v=YX40hbAHx3s

O example with recurrence

« tntuiton
£ 1, tme s constant:
o 2 e e e recurive
e alose
en(seq) =1 for n = 3 we make two recursive
yield [aeq) callswith size 2 (ignoring size 1
‘. — alls) 2x 2
’ el ielene B o - 4w make more calls,a
14 feald : leaotincluding 2 2. ¢
o ot = 5 we ke even more

cals, ateast including.
Ix2x
= forn we make atleast 2% Tc calls

Note that the master thearem is not useful for this algorithm.

	Analysis of Algorithms
	Introduction
	What are we analyzing?
	How to determine running time of an algorithm?

	Preliminaries
	Some functions to know about
	Some functions to know about
	Some functions to know about
	A few facts about logarithms
	Polynomials
	Combinations and permutations
	Proof by induction
	Proof by induction

	Asymptotic analysis
	Formal analysis of algorithm running time
	How much hardware independence?
	RAM model: an example
	Formal analysis of running time
	Focus on the worst case
	Counting primitive operations
	Big-O notation
	Big-O example
	Big-O, another example
	Big-O, yet another example
	Back to the function classes
	Rules of thumb
	Rules of thumb
	Big-O: back to nearest points
	Big-O examples
	Recursive example
	Why asymptotic analysis is important?
	Worst case and asymptotic analysis
	Big-O relatives
	Big-O, Big-, Big-: an example
	Summary

	Appendix
	Acknowledgments, credits, references
	A(nother) view of computational complexity
	Exercise
	Recurrence relations
	Big-O example with recurrence

